Ejemplo n.º 1
0
def hyp(input_path, output_path, device, batch_size, html, ext, sample_rate,
        max_duration):

    os.makedirs(output_path, exist_ok=True)
    audio_source = ([
        (input_path, audio_name) for audio_name in os.listdir(input_path)
    ] if os.path.isdir(input_path) else [(os.path.dirname(input_path),
                                          os.path.basename(input_path))])
    model = PyannoteDiarizationModel(device=device, batch_size=batch_size)
    for i, (input_path, audio_name) in enumerate(audio_source):
        print(i, '/', len(audio_source), audio_name)
        audio_path = os.path.join(input_path, audio_name)
        noextname = audio_name[:-len(ext)]
        transcript_path = os.path.join(output_path, noextname + '.json')
        rttm_path = os.path.join(output_path, noextname + '.rttm')

        signal, sample_rate = audio.read_audio(audio_path,
                                               sample_rate=sample_rate,
                                               mono=True,
                                               dtype='float32',
                                               duration=max_duration)
        transcript = model(signal,
                           sample_rate=sample_rate,
                           extra=dict(audio_path=audio_path))
        transcripts.collect_speaker_names(transcript, set_speaker_data=True)

        transcripts.save(transcript_path, transcript)
        print(transcript_path)

        transcripts.save(rttm_path, transcript)
        print(rttm_path)

        if html:
            html_path = os.path.join(output_path, audio_name + '.html')
            vis.transcript(html_path,
                           sample_rate=sample_rate,
                           mono=True,
                           transcript=transcript,
                           duration=max_duration)
Ejemplo n.º 2
0
    def __init__(
            self,
            data_paths,
            text_pipelines: typing.List[
                language_processing.ProcessingPipeline],
            sample_rate,
            frontend=None,
            speaker_names=None,
            waveform_transform_debug_dir=None,
            min_duration=None,
            max_duration=None,
            duration_filter=True,
            min_ref_len=None,
            max_ref_len=None,
            max_num_channels=2,
            ref_len_filter=True,
            mono=True,
            audio_dtype='float32',
            segmented=False,
            time_padding_multiple=1,
            audio_backend=None,
            exclude=set(),
            join_transcript=False,
            bucket=None,
            pop_meta=False,
            string_array_encoding='utf_16_le',
            _print=print,
            debug_short_long_records_features_from_whole_normalized_signal=False
    ):
        self.debug_short_long_records_features_from_whole_normalized_signal = debug_short_long_records_features_from_whole_normalized_signal
        self.join_transcript = join_transcript
        self.max_duration = max_duration
        self.text_pipelines = text_pipelines
        self.frontend = frontend
        self.sample_rate = sample_rate
        self.waveform_transform_debug_dir = waveform_transform_debug_dir
        self.segmented = segmented
        self.time_padding_multiple = time_padding_multiple
        self.mono = mono
        self.audio_backend = audio_backend
        self.audio_dtype = audio_dtype

        data_paths = data_paths if isinstance(data_paths,
                                              list) else [data_paths]
        exclude = set(exclude)

        tic = time.time()

        transcripts_read = list(map(transcripts.load, data_paths))
        _print('Dataset reading time: ',
               time.time() - tic)
        tic = time.time()

        #TODO group only segmented = True
        segments_by_audio_path = []
        for transcript in transcripts_read:
            transcript = sorted(transcript, key=transcripts.sort_key)
            transcript = itertools.groupby(transcript,
                                           key=transcripts.group_key)
            for _, example in transcript:
                segments_by_audio_path.append(list(example))

        speaker_names_filtered = set()
        examples_filtered = []
        examples_lens = []
        transcript = []

        duration = lambda example: sum(
            map(transcripts.compute_duration, example))
        segments_by_audio_path.sort(key=duration)

        # TODO: not segmented mode may fail if several examples have same audio_path
        for example in segments_by_audio_path:
            exclude_ok = ((not exclude) or
                          (transcripts.audio_name(example[0]) not in exclude))
            duration_ok = (
                (not duration_filter) or
                (min_duration is None or min_duration <= duration(example)) and
                (max_duration is None or duration(example) <= max_duration))

            if duration_ok and exclude_ok:
                b = bucket(example) if bucket is not None else 0
                for t in example:
                    t['bucket'] = b
                    t['ref'] = t.get('ref', transcripts.ref_missing)
                    t['begin'] = t.get('begin', transcripts.time_missing)
                    t['end'] = t.get('end', transcripts.time_missing)
                    t['channel'] = t.get('channel',
                                         transcripts.channel_missing)

                examples_filtered.append(example)
                transcript.extend(example)
                examples_lens.append(len(example))

        self.speaker_names = transcripts.collect_speaker_names(
            transcript,
            speaker_names=speaker_names or [],
            num_speakers=max_num_channels,
            set_speaker=True)

        _print('Dataset construction time: ',
               time.time() - tic)
        tic = time.time()

        self.bucket = torch.ShortTensor(
            [e[0]['bucket'] for e in examples_filtered])
        self.audio_path = utils.TensorBackedStringArray(
            [e[0]['audio_path'] for e in examples_filtered],
            encoding=string_array_encoding)
        self.ref = utils.TensorBackedStringArray(
            [t['ref'] for t in transcript], encoding=string_array_encoding)
        self.begin = torch.DoubleTensor([t['begin'] for t in transcript])
        self.end = torch.DoubleTensor([t['end'] for t in transcript])
        self.channel = torch.CharTensor([t['channel'] for t in transcript])
        self.speaker = torch.LongTensor([t['speaker'] for t in transcript])
        self.cumlen = torch.ShortTensor(examples_lens).cumsum(
            dim=0, dtype=torch.int64)
        if pop_meta:
            self.meta = {}
        else:
            self.meta = {self.example_id(t): t for t in transcript}
            if self.join_transcript:
                #TODO: harmonize dummy transcript of replace_transcript case (and fix channel)
                self.meta.update({
                    self.example_id(t_src): t_tgt
                    for e in examples_filtered for t_src, t_tgt in [(
                        dict(audio_path=e[0]['audio_path'],
                             begin=transcripts.time_missing,
                             end=transcripts.time_missing,
                             channel=transcripts.channel_missing,
                             speaker=transcripts.speaker_missing),
                        dict(audio_path=e[0]['audio_path'],
                             begin=0.0,
                             end=audio.compute_duration(e[0]['audio_path'],
                                                        backend=None),
                             channel=transcripts.channel_missing,
                             speaker=transcripts.speaker_missing,
                             ref=' '.join(
                                 filter(bool, [t.get('ref', '')
                                               for t in e]))))]
                })

        _print('Dataset tensors creation time: ', time.time() - tic)
Ejemplo n.º 3
0
def main(args, ext_json=['.json', '.json.gz']):
    utils.enable_jit_fusion()

    assert args.output_json or args.output_html or args.output_txt or args.output_csv, \
     'at least one of the output formats must be provided'
    os.makedirs(args.output_path, exist_ok=True)

    audio_data_paths = set(
        p for f in args.input_path
        for p in ([os.path.join(f, g)
                   for g in os.listdir(f)] if os.path.isdir(f) else [f])
        if os.path.isfile(p) and any(map(p.endswith, args.ext)))
    json_data_paths = set(
        p for p in args.input_path if any(map(p.endswith, ext_json))
        and not utils.strip_suffixes(p, ext_json) in audio_data_paths)

    data_paths = list(audio_data_paths | json_data_paths)

    exclude = set([
        os.path.splitext(basename)[0]
        for basename in os.listdir(args.output_path)
        if basename.endswith('.json')
    ]) if args.skip_processed else None

    data_paths = [
        path for path in data_paths
        if exclude is None or os.path.basename(path) not in exclude
    ]

    text_pipeline, frontend, model, generator = setup(args)
    val_dataset = datasets.AudioTextDataset(
        data_paths, [text_pipeline],
        args.sample_rate,
        frontend=frontend if not args.frontend_in_model else None,
        mono=args.mono,
        time_padding_multiple=args.batch_time_padding_multiple,
        audio_backend=args.audio_backend,
        exclude=exclude,
        max_duration=args.transcribe_first_n_sec,
        mode='batched_channels'
        if args.join_transcript else 'batched_transcript',
        string_array_encoding=args.dataset_string_array_encoding,
        debug_short_long_records_features_from_whole_normalized_signal=args.
        debug_short_long_records_features_from_whole_normalized_signal)
    print('Examples count: ', len(val_dataset))
    val_meta = val_dataset.pop_meta()
    val_data_loader = torch.utils.data.DataLoader(
        val_dataset,
        batch_size=None,
        collate_fn=val_dataset.collate_fn,
        num_workers=args.num_workers)
    csv_sep = dict(tab='\t', comma=',')[args.csv_sep]
    csv_lines = []  # only used if args.output_csv is True

    oom_handler = utils.OomHandler(max_retries=args.oom_retries)
    for i, (meta, s, x, xlen, y, ylen) in enumerate(val_data_loader):
        print(f'Processing: {i}/{len(val_dataset)}')
        meta = [val_meta[t['example_id']] for t in meta]

        audio_path = meta[0]['audio_path']
        audio_name = transcripts.audio_name(audio_path)
        begin_end = [dict(begin=t['begin'], end=t['end']) for t in meta]
        begin = torch.tensor([t['begin'] for t in begin_end],
                             dtype=torch.float)
        end = torch.tensor([t['end'] for t in begin_end], dtype=torch.float)
        #TODO WARNING assumes frontend not in dataset
        if not args.frontend_in_model:
            print('\n' * 10 + 'WARNING\n' * 5)
            print(
                'transcribe.py assumes frontend in model, in other case time alignment was incorrect'
            )
            print('WARNING\n' * 5 + '\n')

        duration = x.shape[-1] / args.sample_rate
        channel = [t['channel'] for t in meta]
        speaker = [t['speaker'] for t in meta]
        speaker_name = [t['speaker_name'] for t in meta]

        if x.numel() == 0:
            print(f'Skipping empty [{audio_path}].')
            continue

        try:
            tic = time.time()
            y, ylen = y.to(args.device), ylen.to(args.device)
            log_probs, logits, olen = model(
                x.squeeze(1).to(args.device), xlen.to(args.device))

            print('Input:', audio_name)
            print('Input time steps:', log_probs.shape[-1],
                  '| target time steps:', y.shape[-1])
            print(
                'Time: audio {audio:.02f} sec | processing {processing:.02f} sec'
                .format(audio=sum(map(transcripts.compute_duration, meta)),
                        processing=time.time() - tic))

            ts: shaping.Bt = duration * torch.linspace(
                0, 1, steps=log_probs.shape[-1],
                device=log_probs.device).unsqueeze(0).expand(x.shape[0], -1)

            ref_segments = [[
                dict(channel=channel[i],
                     begin=begin_end[i]['begin'],
                     end=begin_end[i]['end'],
                     ref=text_pipeline.postprocess(
                         text_pipeline.preprocess(meta[i]['ref'])))
            ] for i in range(len(meta))]
            hyp_segments = [
                alternatives[0] for alternatives in generator.generate(
                    tokenizer=text_pipeline.tokenizer,
                    log_probs=log_probs,
                    begin=begin,
                    end=end,
                    output_lengths=olen,
                    time_stamps=ts,
                    segment_text_key='hyp',
                    segment_extra_info=[
                        dict(speaker=s, speaker_name=sn, channel=c)
                        for s, sn, c in zip(speaker, speaker_name, channel)
                    ])
            ]
            hyp_segments = [
                transcripts.map_text(text_pipeline.postprocess, hyp=hyp)
                for hyp in hyp_segments
            ]
            hyp, ref = '\n'.join(
                transcripts.join(hyp=h)
                for h in hyp_segments).strip(), '\n'.join(
                    transcripts.join(ref=r) for r in ref_segments).strip()
            if args.verbose:
                print('HYP:', hyp)
            print('CER: {cer:.02%}'.format(cer=metrics.cer(hyp=hyp, ref=ref)))

            tic_alignment = time.time()
            if args.align and y.numel() > 0:
                alignment: shaping.BY = ctc.alignment(
                    log_probs.permute(2, 0, 1),
                    y[:, 0, :],  # assumed that 0 channel is char labels
                    olen,
                    ylen[:, 0],
                    blank=text_pipeline.tokenizer.eps_id,
                    pack_backpointers=args.pack_backpointers)
                aligned_ts: shaping.Bt = ts.gather(1, alignment)

                ref_segments = [
                    alternatives[0] for alternatives in generator.generate(
                        tokenizer=text_pipeline.tokenizer,
                        log_probs=torch.nn.functional.one_hot(
                            y[:,
                              0, :], num_classes=log_probs.shape[1]).permute(
                                  0, 2, 1),
                        begin=begin,
                        end=end,
                        output_lengths=ylen,
                        time_stamps=aligned_ts,
                        segment_text_key='ref',
                        segment_extra_info=[
                            dict(speaker=s, speaker_name=sn, channel=c)
                            for s, sn, c in zip(speaker, speaker_name, channel)
                        ])
                ]
                ref_segments = [
                    transcripts.map_text(text_pipeline.postprocess, hyp=ref)
                    for ref in ref_segments
                ]
            oom_handler.reset()
        except:
            if oom_handler.try_recover(model.parameters()):
                print(f'Skipping {i} / {len(val_dataset)}')
                continue
            else:
                raise

        print('Alignment time: {:.02f} sec'.format(time.time() -
                                                   tic_alignment))

        ref_transcript, hyp_transcript = [
            sorted(transcripts.flatten(segments), key=transcripts.sort_key)
            for segments in [ref_segments, hyp_segments]
        ]

        if args.max_segment_duration:
            if ref:
                ref_segments = list(
                    transcripts.segment_by_time(ref_transcript,
                                                args.max_segment_duration))
                hyp_segments = list(
                    transcripts.segment_by_ref(hyp_transcript, ref_segments))
            else:
                hyp_segments = list(
                    transcripts.segment_by_time(hyp_transcript,
                                                args.max_segment_duration))
                ref_segments = [[] for _ in hyp_segments]

        #### HACK for diarization
        elif args.ref_transcript_path and args.join_transcript:
            audio_name_hack = audio_name.split('.')[0]
            #TODO: normalize ref field
            ref_segments = [[t] for t in sorted(transcripts.load(
                os.path.join(args.ref_transcript_path, audio_name_hack +
                             '.json')),
                                                key=transcripts.sort_key)]
            hyp_segments = list(
                transcripts.segment_by_ref(hyp_transcript,
                                           ref_segments,
                                           set_speaker=True,
                                           soft=False))
        #### END OF HACK

        has_ref = bool(transcripts.join(ref=transcripts.flatten(ref_segments)))

        transcript = []
        for hyp_transcript, ref_transcript in zip(hyp_segments, ref_segments):
            hyp, ref = transcripts.join(hyp=hyp_transcript), transcripts.join(
                ref=ref_transcript)

            transcript.append(
                dict(audio_path=audio_path,
                     ref=ref,
                     hyp=hyp,
                     speaker_name=transcripts.speaker_name(ref=ref_transcript,
                                                           hyp=hyp_transcript),
                     words=metrics.align_words(
                         *metrics.align_strings(hyp=hyp, ref=ref))
                     if args.align_words else [],
                     words_ref=ref_transcript,
                     words_hyp=hyp_transcript,
                     **transcripts.summary(hyp_transcript),
                     **(dict(cer=metrics.cer(hyp=hyp, ref=ref))
                        if has_ref else {})))

        transcripts.collect_speaker_names(transcript,
                                          set_speaker_data=True,
                                          num_speakers=2)

        filtered_transcript = list(
            transcripts.prune(transcript,
                              align_boundary_words=args.align_boundary_words,
                              cer=args.prune_cer,
                              duration=args.prune_duration,
                              gap=args.prune_gap,
                              allowed_unk_count=args.prune_unk,
                              num_speakers=args.prune_num_speakers))

        print('Filtered segments:', len(filtered_transcript), 'out of',
              len(transcript))

        if args.output_json:
            transcript_path = os.path.join(args.output_path,
                                           audio_name + '.json')
            print(transcripts.save(transcript_path, filtered_transcript))

        if args.output_html:
            transcript_path = os.path.join(args.output_path,
                                           audio_name + '.html')
            print(
                vis.transcript(transcript_path, args.sample_rate, args.mono,
                               transcript, filtered_transcript))

        if args.output_txt:
            transcript_path = os.path.join(args.output_path,
                                           audio_name + '.txt')
            with open(transcript_path, 'w') as f:
                f.write(' '.join(t['hyp'].strip()
                                 for t in filtered_transcript))
            print(transcript_path)

        if args.output_csv:
            assert len({t['audio_path'] for t in filtered_transcript}) == 1
            audio_path = filtered_transcript[0]['audio_path']
            hyp = ' '.join(t['hyp'].strip() for t in filtered_transcript)
            begin = min(t['begin'] for t in filtered_transcript)
            end = max(t['end'] for t in filtered_transcript)
            csv_lines.append(
                csv_sep.join([audio_path, hyp,
                              str(begin),
                              str(end)]))

        if args.logits:
            logits_file_path = os.path.join(args.output_path,
                                            audio_name + '.pt')
            if args.logits_crop:
                begin_end = [
                    dict(
                        zip(['begin', 'end'], [
                            t['begin'] + c / float(o) * (t['end'] - t['begin'])
                            for c in args.logits_crop
                        ])) for o, t in zip(olen, begin_end)
                ]
                logits_crop = [slice(*args.logits_crop) for o in olen]
            else:
                logits_crop = [slice(int(o)) for o in olen]

            # TODO: filter ref / hyp by channel?
            torch.save([
                dict(audio_path=audio_path,
                     logits=l[..., logits_crop[i]],
                     **begin_end[i],
                     ref=ref,
                     hyp=hyp) for i, l in enumerate(logits.cpu())
            ], logits_file_path)
            print(logits_file_path)

        print('Done: {:.02f} sec\n'.format(time.time() - tic))

    if args.output_csv:
        transcript_path = os.path.join(args.output_path, 'transcripts.csv')
        with open(transcript_path, 'w') as f:
            f.write('\n'.join(csv_lines))
        print(transcript_path)
Ejemplo n.º 4
0
    def __init__(
        self,
        data_paths: typing.List[str],
        text_pipelines: typing.List[text_processing.ProcessingPipeline],
        sample_rate: int,
        mode: str = DEFAULT_MODE,
        frontend: typing.Optional[torch.nn.Module] = None,
        speaker_names: typing.Optional[typing.List[str]] = None,
        max_audio_file_size: typing.Optional[float] = None,  #bytes
        min_duration: typing.Optional[float] = None,
        max_duration: typing.Optional[float] = None,
        max_num_channels: int = 2,
        mono: bool = True,
        audio_dtype: str = 'float32',
        time_padding_multiple: int = 1,
        audio_backend: typing.Optional[str] = None,
        exclude: typing.Optional[typing.Set] = None,
        bucket_fn: typing.Callable[[typing.List[typing.Dict]],
                                   int] = lambda transcript: 0,
        pop_meta: bool = False,
        string_array_encoding: str = 'utf_16_le',
        _print: typing.Callable = print,
        debug_short_long_records_features_from_whole_normalized_signal:
        bool = False,
        duration_from_transcripts: bool = False,
    ):
        self.debug_short_long_records_features_from_whole_normalized_signal = debug_short_long_records_features_from_whole_normalized_signal
        self.mode = mode
        self.min_duration = min_duration
        self.max_duration = max_duration
        self.max_audio_file_size = max_audio_file_size
        self.text_pipelines = text_pipelines
        self.frontend = frontend
        self.sample_rate = sample_rate
        self.time_padding_multiple = time_padding_multiple
        self.mono = mono
        self.audio_backend = audio_backend
        self.audio_dtype = audio_dtype

        data_paths = data_paths if isinstance(data_paths,
                                              list) else [data_paths]

        data_paths_ = []
        for data_path in data_paths:
            if os.path.isdir(data_path):
                data_paths_.extend(
                    os.path.join(data_path, filename) for filename in filter(
                        audio.is_audio, os.listdir(data_path)))
            else:
                data_paths_.append(data_path)
        data_paths = data_paths_

        tic = time.time()

        segments = []
        for path in data_paths:
            if audio.is_audio(path):
                assert self.mono or self.mode != AudioTextDataset.DEFAULT_MODE, 'Only mono audio files allowed as dataset input in default mode'
                if self.mono:
                    transcript = [
                        dict(audio_path=path,
                             channel=transcripts.channel_missing)
                    ]
                else:
                    transcript = [
                        dict(audio_path=path, channel=c)
                        for c in range(max_num_channels)
                    ]
            else:
                transcript = transcripts.load(path)
            segments.extend(transcript)

        _print('Dataset reading time: ', time.time() - tic)
        tic = time.time()

        # get_or_else required because dictionary could contain None values which we want to replace.
        # dict.get doesnt work in this case
        get_or_else = lambda dictionary, key, default: dictionary[
            key] if dictionary.get(key) is not None else default
        for t in segments:
            t['ref'] = get_or_else(t, 'ref', transcripts.ref_missing)
            t['begin'] = get_or_else(t, 'begin', transcripts.time_missing)
            t['end'] = get_or_else(t, 'end', transcripts.time_missing)
            t['channel'] = get_or_else(
                t, 'channel', transcripts.channel_missing
            ) if not self.mono else transcripts.channel_missing

        transcripts.collect_speaker_names(segments,
                                          speaker_names=speaker_names or [],
                                          num_speakers=max_num_channels,
                                          set_speaker_data=True)

        buckets = []
        grouped_segments = []
        transcripts_len = []
        speakers_len = []
        if self.mode == AudioTextDataset.DEFAULT_MODE:
            groupped_transcripts = ((i, [t]) for i, t in enumerate(segments))
        else:
            groupped_transcripts = itertools.groupby(
                sorted(segments, key=transcripts.group_key),
                transcripts.group_key)

        for group_key, transcript in groupped_transcripts:
            transcript = sorted(transcript, key=transcripts.sort_key)
            if self.mode == AudioTextDataset.BATCHED_CHANNELS_MODE:
                transcript = transcripts.join_transcript(
                    transcript,
                    self.mono,
                    duration_from_transcripts=duration_from_transcripts)

            if exclude is not None:
                allowed_audio_names = set(
                    transcripts.audio_name(t) for t in transcript
                    if transcripts.audio_name(t) not in exclude)
            else:
                allowed_audio_names = None

            transcript = transcripts.prune(
                transcript,
                allowed_audio_names=allowed_audio_names,
                duration=(
                    min_duration if min_duration is not None else 0.0,
                    max_duration if max_duration is not None else 24.0 * 3600,
                ),  #24h
                max_audio_file_size=max_audio_file_size)
            transcript = list(transcript)
            for t in transcript:
                t['example_id'] = AudioTextDataset.get_example_id(t)

            if len(transcript) == 0:
                continue

            bucket = bucket_fn(transcript)
            for t in transcript:
                t['bucket'] = bucket
                speakers_len.append(
                    len(t['speaker']) if (
                        isinstance(t['speaker'], list)) else 1)
            buckets.append(bucket)
            grouped_segments.extend(transcript)
            transcripts_len.append(len(transcript))

        _print('Dataset construction time: ', time.time() - tic)
        tic = time.time()

        self.bucket = torch.tensor(buckets, dtype=torch.short)
        self.audio_path = utils.TensorBackedStringArray(
            [t['audio_path'] for t in grouped_segments],
            encoding=string_array_encoding)
        self.ref = utils.TensorBackedStringArray(
            [t['ref'] for t in grouped_segments],
            encoding=string_array_encoding)
        self.begin = torch.tensor([t['begin'] for t in grouped_segments],
                                  dtype=torch.float64)
        self.end = torch.tensor([t['end'] for t in grouped_segments],
                                dtype=torch.float64)
        self.channel = torch.tensor([t['channel'] for t in grouped_segments],
                                    dtype=torch.int8)
        self.example_id = utils.TensorBackedStringArray(
            [t['example_id'] for t in grouped_segments],
            encoding=string_array_encoding)
        if self.mode == AudioTextDataset.BATCHED_CHANNELS_MODE:
            self.speaker = torch.tensor([
                speaker for t in grouped_segments for speaker in t['speaker']
            ],
                                        dtype=torch.int64)
        else:
            self.speaker = torch.tensor(
                [t['speaker'] for t in grouped_segments], dtype=torch.int64)
        self.speaker_len = torch.tensor(speakers_len, dtype=torch.int16)
        self.transcript_cumlen = torch.tensor(transcripts_len,
                                              dtype=torch.int16).cumsum(
                                                  dim=0, dtype=torch.int64)
        if pop_meta:
            self.meta = {}
        else:
            self.meta = {t['example_id']: t for t in grouped_segments}
        _print('Dataset tensors creation time: ', time.time() - tic)