def hyp(input_path, output_path, device, batch_size, html, ext, sample_rate, max_duration): os.makedirs(output_path, exist_ok=True) audio_source = ([ (input_path, audio_name) for audio_name in os.listdir(input_path) ] if os.path.isdir(input_path) else [(os.path.dirname(input_path), os.path.basename(input_path))]) model = PyannoteDiarizationModel(device=device, batch_size=batch_size) for i, (input_path, audio_name) in enumerate(audio_source): print(i, '/', len(audio_source), audio_name) audio_path = os.path.join(input_path, audio_name) noextname = audio_name[:-len(ext)] transcript_path = os.path.join(output_path, noextname + '.json') rttm_path = os.path.join(output_path, noextname + '.rttm') signal, sample_rate = audio.read_audio(audio_path, sample_rate=sample_rate, mono=True, dtype='float32', duration=max_duration) transcript = model(signal, sample_rate=sample_rate, extra=dict(audio_path=audio_path)) transcripts.collect_speaker_names(transcript, set_speaker_data=True) transcripts.save(transcript_path, transcript) print(transcript_path) transcripts.save(rttm_path, transcript) print(rttm_path) if html: html_path = os.path.join(output_path, audio_name + '.html') vis.transcript(html_path, sample_rate=sample_rate, mono=True, transcript=transcript, duration=max_duration)
def __init__( self, data_paths, text_pipelines: typing.List[ language_processing.ProcessingPipeline], sample_rate, frontend=None, speaker_names=None, waveform_transform_debug_dir=None, min_duration=None, max_duration=None, duration_filter=True, min_ref_len=None, max_ref_len=None, max_num_channels=2, ref_len_filter=True, mono=True, audio_dtype='float32', segmented=False, time_padding_multiple=1, audio_backend=None, exclude=set(), join_transcript=False, bucket=None, pop_meta=False, string_array_encoding='utf_16_le', _print=print, debug_short_long_records_features_from_whole_normalized_signal=False ): self.debug_short_long_records_features_from_whole_normalized_signal = debug_short_long_records_features_from_whole_normalized_signal self.join_transcript = join_transcript self.max_duration = max_duration self.text_pipelines = text_pipelines self.frontend = frontend self.sample_rate = sample_rate self.waveform_transform_debug_dir = waveform_transform_debug_dir self.segmented = segmented self.time_padding_multiple = time_padding_multiple self.mono = mono self.audio_backend = audio_backend self.audio_dtype = audio_dtype data_paths = data_paths if isinstance(data_paths, list) else [data_paths] exclude = set(exclude) tic = time.time() transcripts_read = list(map(transcripts.load, data_paths)) _print('Dataset reading time: ', time.time() - tic) tic = time.time() #TODO group only segmented = True segments_by_audio_path = [] for transcript in transcripts_read: transcript = sorted(transcript, key=transcripts.sort_key) transcript = itertools.groupby(transcript, key=transcripts.group_key) for _, example in transcript: segments_by_audio_path.append(list(example)) speaker_names_filtered = set() examples_filtered = [] examples_lens = [] transcript = [] duration = lambda example: sum( map(transcripts.compute_duration, example)) segments_by_audio_path.sort(key=duration) # TODO: not segmented mode may fail if several examples have same audio_path for example in segments_by_audio_path: exclude_ok = ((not exclude) or (transcripts.audio_name(example[0]) not in exclude)) duration_ok = ( (not duration_filter) or (min_duration is None or min_duration <= duration(example)) and (max_duration is None or duration(example) <= max_duration)) if duration_ok and exclude_ok: b = bucket(example) if bucket is not None else 0 for t in example: t['bucket'] = b t['ref'] = t.get('ref', transcripts.ref_missing) t['begin'] = t.get('begin', transcripts.time_missing) t['end'] = t.get('end', transcripts.time_missing) t['channel'] = t.get('channel', transcripts.channel_missing) examples_filtered.append(example) transcript.extend(example) examples_lens.append(len(example)) self.speaker_names = transcripts.collect_speaker_names( transcript, speaker_names=speaker_names or [], num_speakers=max_num_channels, set_speaker=True) _print('Dataset construction time: ', time.time() - tic) tic = time.time() self.bucket = torch.ShortTensor( [e[0]['bucket'] for e in examples_filtered]) self.audio_path = utils.TensorBackedStringArray( [e[0]['audio_path'] for e in examples_filtered], encoding=string_array_encoding) self.ref = utils.TensorBackedStringArray( [t['ref'] for t in transcript], encoding=string_array_encoding) self.begin = torch.DoubleTensor([t['begin'] for t in transcript]) self.end = torch.DoubleTensor([t['end'] for t in transcript]) self.channel = torch.CharTensor([t['channel'] for t in transcript]) self.speaker = torch.LongTensor([t['speaker'] for t in transcript]) self.cumlen = torch.ShortTensor(examples_lens).cumsum( dim=0, dtype=torch.int64) if pop_meta: self.meta = {} else: self.meta = {self.example_id(t): t for t in transcript} if self.join_transcript: #TODO: harmonize dummy transcript of replace_transcript case (and fix channel) self.meta.update({ self.example_id(t_src): t_tgt for e in examples_filtered for t_src, t_tgt in [( dict(audio_path=e[0]['audio_path'], begin=transcripts.time_missing, end=transcripts.time_missing, channel=transcripts.channel_missing, speaker=transcripts.speaker_missing), dict(audio_path=e[0]['audio_path'], begin=0.0, end=audio.compute_duration(e[0]['audio_path'], backend=None), channel=transcripts.channel_missing, speaker=transcripts.speaker_missing, ref=' '.join( filter(bool, [t.get('ref', '') for t in e]))))] }) _print('Dataset tensors creation time: ', time.time() - tic)
def main(args, ext_json=['.json', '.json.gz']): utils.enable_jit_fusion() assert args.output_json or args.output_html or args.output_txt or args.output_csv, \ 'at least one of the output formats must be provided' os.makedirs(args.output_path, exist_ok=True) audio_data_paths = set( p for f in args.input_path for p in ([os.path.join(f, g) for g in os.listdir(f)] if os.path.isdir(f) else [f]) if os.path.isfile(p) and any(map(p.endswith, args.ext))) json_data_paths = set( p for p in args.input_path if any(map(p.endswith, ext_json)) and not utils.strip_suffixes(p, ext_json) in audio_data_paths) data_paths = list(audio_data_paths | json_data_paths) exclude = set([ os.path.splitext(basename)[0] for basename in os.listdir(args.output_path) if basename.endswith('.json') ]) if args.skip_processed else None data_paths = [ path for path in data_paths if exclude is None or os.path.basename(path) not in exclude ] text_pipeline, frontend, model, generator = setup(args) val_dataset = datasets.AudioTextDataset( data_paths, [text_pipeline], args.sample_rate, frontend=frontend if not args.frontend_in_model else None, mono=args.mono, time_padding_multiple=args.batch_time_padding_multiple, audio_backend=args.audio_backend, exclude=exclude, max_duration=args.transcribe_first_n_sec, mode='batched_channels' if args.join_transcript else 'batched_transcript', string_array_encoding=args.dataset_string_array_encoding, debug_short_long_records_features_from_whole_normalized_signal=args. debug_short_long_records_features_from_whole_normalized_signal) print('Examples count: ', len(val_dataset)) val_meta = val_dataset.pop_meta() val_data_loader = torch.utils.data.DataLoader( val_dataset, batch_size=None, collate_fn=val_dataset.collate_fn, num_workers=args.num_workers) csv_sep = dict(tab='\t', comma=',')[args.csv_sep] csv_lines = [] # only used if args.output_csv is True oom_handler = utils.OomHandler(max_retries=args.oom_retries) for i, (meta, s, x, xlen, y, ylen) in enumerate(val_data_loader): print(f'Processing: {i}/{len(val_dataset)}') meta = [val_meta[t['example_id']] for t in meta] audio_path = meta[0]['audio_path'] audio_name = transcripts.audio_name(audio_path) begin_end = [dict(begin=t['begin'], end=t['end']) for t in meta] begin = torch.tensor([t['begin'] for t in begin_end], dtype=torch.float) end = torch.tensor([t['end'] for t in begin_end], dtype=torch.float) #TODO WARNING assumes frontend not in dataset if not args.frontend_in_model: print('\n' * 10 + 'WARNING\n' * 5) print( 'transcribe.py assumes frontend in model, in other case time alignment was incorrect' ) print('WARNING\n' * 5 + '\n') duration = x.shape[-1] / args.sample_rate channel = [t['channel'] for t in meta] speaker = [t['speaker'] for t in meta] speaker_name = [t['speaker_name'] for t in meta] if x.numel() == 0: print(f'Skipping empty [{audio_path}].') continue try: tic = time.time() y, ylen = y.to(args.device), ylen.to(args.device) log_probs, logits, olen = model( x.squeeze(1).to(args.device), xlen.to(args.device)) print('Input:', audio_name) print('Input time steps:', log_probs.shape[-1], '| target time steps:', y.shape[-1]) print( 'Time: audio {audio:.02f} sec | processing {processing:.02f} sec' .format(audio=sum(map(transcripts.compute_duration, meta)), processing=time.time() - tic)) ts: shaping.Bt = duration * torch.linspace( 0, 1, steps=log_probs.shape[-1], device=log_probs.device).unsqueeze(0).expand(x.shape[0], -1) ref_segments = [[ dict(channel=channel[i], begin=begin_end[i]['begin'], end=begin_end[i]['end'], ref=text_pipeline.postprocess( text_pipeline.preprocess(meta[i]['ref']))) ] for i in range(len(meta))] hyp_segments = [ alternatives[0] for alternatives in generator.generate( tokenizer=text_pipeline.tokenizer, log_probs=log_probs, begin=begin, end=end, output_lengths=olen, time_stamps=ts, segment_text_key='hyp', segment_extra_info=[ dict(speaker=s, speaker_name=sn, channel=c) for s, sn, c in zip(speaker, speaker_name, channel) ]) ] hyp_segments = [ transcripts.map_text(text_pipeline.postprocess, hyp=hyp) for hyp in hyp_segments ] hyp, ref = '\n'.join( transcripts.join(hyp=h) for h in hyp_segments).strip(), '\n'.join( transcripts.join(ref=r) for r in ref_segments).strip() if args.verbose: print('HYP:', hyp) print('CER: {cer:.02%}'.format(cer=metrics.cer(hyp=hyp, ref=ref))) tic_alignment = time.time() if args.align and y.numel() > 0: alignment: shaping.BY = ctc.alignment( log_probs.permute(2, 0, 1), y[:, 0, :], # assumed that 0 channel is char labels olen, ylen[:, 0], blank=text_pipeline.tokenizer.eps_id, pack_backpointers=args.pack_backpointers) aligned_ts: shaping.Bt = ts.gather(1, alignment) ref_segments = [ alternatives[0] for alternatives in generator.generate( tokenizer=text_pipeline.tokenizer, log_probs=torch.nn.functional.one_hot( y[:, 0, :], num_classes=log_probs.shape[1]).permute( 0, 2, 1), begin=begin, end=end, output_lengths=ylen, time_stamps=aligned_ts, segment_text_key='ref', segment_extra_info=[ dict(speaker=s, speaker_name=sn, channel=c) for s, sn, c in zip(speaker, speaker_name, channel) ]) ] ref_segments = [ transcripts.map_text(text_pipeline.postprocess, hyp=ref) for ref in ref_segments ] oom_handler.reset() except: if oom_handler.try_recover(model.parameters()): print(f'Skipping {i} / {len(val_dataset)}') continue else: raise print('Alignment time: {:.02f} sec'.format(time.time() - tic_alignment)) ref_transcript, hyp_transcript = [ sorted(transcripts.flatten(segments), key=transcripts.sort_key) for segments in [ref_segments, hyp_segments] ] if args.max_segment_duration: if ref: ref_segments = list( transcripts.segment_by_time(ref_transcript, args.max_segment_duration)) hyp_segments = list( transcripts.segment_by_ref(hyp_transcript, ref_segments)) else: hyp_segments = list( transcripts.segment_by_time(hyp_transcript, args.max_segment_duration)) ref_segments = [[] for _ in hyp_segments] #### HACK for diarization elif args.ref_transcript_path and args.join_transcript: audio_name_hack = audio_name.split('.')[0] #TODO: normalize ref field ref_segments = [[t] for t in sorted(transcripts.load( os.path.join(args.ref_transcript_path, audio_name_hack + '.json')), key=transcripts.sort_key)] hyp_segments = list( transcripts.segment_by_ref(hyp_transcript, ref_segments, set_speaker=True, soft=False)) #### END OF HACK has_ref = bool(transcripts.join(ref=transcripts.flatten(ref_segments))) transcript = [] for hyp_transcript, ref_transcript in zip(hyp_segments, ref_segments): hyp, ref = transcripts.join(hyp=hyp_transcript), transcripts.join( ref=ref_transcript) transcript.append( dict(audio_path=audio_path, ref=ref, hyp=hyp, speaker_name=transcripts.speaker_name(ref=ref_transcript, hyp=hyp_transcript), words=metrics.align_words( *metrics.align_strings(hyp=hyp, ref=ref)) if args.align_words else [], words_ref=ref_transcript, words_hyp=hyp_transcript, **transcripts.summary(hyp_transcript), **(dict(cer=metrics.cer(hyp=hyp, ref=ref)) if has_ref else {}))) transcripts.collect_speaker_names(transcript, set_speaker_data=True, num_speakers=2) filtered_transcript = list( transcripts.prune(transcript, align_boundary_words=args.align_boundary_words, cer=args.prune_cer, duration=args.prune_duration, gap=args.prune_gap, allowed_unk_count=args.prune_unk, num_speakers=args.prune_num_speakers)) print('Filtered segments:', len(filtered_transcript), 'out of', len(transcript)) if args.output_json: transcript_path = os.path.join(args.output_path, audio_name + '.json') print(transcripts.save(transcript_path, filtered_transcript)) if args.output_html: transcript_path = os.path.join(args.output_path, audio_name + '.html') print( vis.transcript(transcript_path, args.sample_rate, args.mono, transcript, filtered_transcript)) if args.output_txt: transcript_path = os.path.join(args.output_path, audio_name + '.txt') with open(transcript_path, 'w') as f: f.write(' '.join(t['hyp'].strip() for t in filtered_transcript)) print(transcript_path) if args.output_csv: assert len({t['audio_path'] for t in filtered_transcript}) == 1 audio_path = filtered_transcript[0]['audio_path'] hyp = ' '.join(t['hyp'].strip() for t in filtered_transcript) begin = min(t['begin'] for t in filtered_transcript) end = max(t['end'] for t in filtered_transcript) csv_lines.append( csv_sep.join([audio_path, hyp, str(begin), str(end)])) if args.logits: logits_file_path = os.path.join(args.output_path, audio_name + '.pt') if args.logits_crop: begin_end = [ dict( zip(['begin', 'end'], [ t['begin'] + c / float(o) * (t['end'] - t['begin']) for c in args.logits_crop ])) for o, t in zip(olen, begin_end) ] logits_crop = [slice(*args.logits_crop) for o in olen] else: logits_crop = [slice(int(o)) for o in olen] # TODO: filter ref / hyp by channel? torch.save([ dict(audio_path=audio_path, logits=l[..., logits_crop[i]], **begin_end[i], ref=ref, hyp=hyp) for i, l in enumerate(logits.cpu()) ], logits_file_path) print(logits_file_path) print('Done: {:.02f} sec\n'.format(time.time() - tic)) if args.output_csv: transcript_path = os.path.join(args.output_path, 'transcripts.csv') with open(transcript_path, 'w') as f: f.write('\n'.join(csv_lines)) print(transcript_path)
def __init__( self, data_paths: typing.List[str], text_pipelines: typing.List[text_processing.ProcessingPipeline], sample_rate: int, mode: str = DEFAULT_MODE, frontend: typing.Optional[torch.nn.Module] = None, speaker_names: typing.Optional[typing.List[str]] = None, max_audio_file_size: typing.Optional[float] = None, #bytes min_duration: typing.Optional[float] = None, max_duration: typing.Optional[float] = None, max_num_channels: int = 2, mono: bool = True, audio_dtype: str = 'float32', time_padding_multiple: int = 1, audio_backend: typing.Optional[str] = None, exclude: typing.Optional[typing.Set] = None, bucket_fn: typing.Callable[[typing.List[typing.Dict]], int] = lambda transcript: 0, pop_meta: bool = False, string_array_encoding: str = 'utf_16_le', _print: typing.Callable = print, debug_short_long_records_features_from_whole_normalized_signal: bool = False, duration_from_transcripts: bool = False, ): self.debug_short_long_records_features_from_whole_normalized_signal = debug_short_long_records_features_from_whole_normalized_signal self.mode = mode self.min_duration = min_duration self.max_duration = max_duration self.max_audio_file_size = max_audio_file_size self.text_pipelines = text_pipelines self.frontend = frontend self.sample_rate = sample_rate self.time_padding_multiple = time_padding_multiple self.mono = mono self.audio_backend = audio_backend self.audio_dtype = audio_dtype data_paths = data_paths if isinstance(data_paths, list) else [data_paths] data_paths_ = [] for data_path in data_paths: if os.path.isdir(data_path): data_paths_.extend( os.path.join(data_path, filename) for filename in filter( audio.is_audio, os.listdir(data_path))) else: data_paths_.append(data_path) data_paths = data_paths_ tic = time.time() segments = [] for path in data_paths: if audio.is_audio(path): assert self.mono or self.mode != AudioTextDataset.DEFAULT_MODE, 'Only mono audio files allowed as dataset input in default mode' if self.mono: transcript = [ dict(audio_path=path, channel=transcripts.channel_missing) ] else: transcript = [ dict(audio_path=path, channel=c) for c in range(max_num_channels) ] else: transcript = transcripts.load(path) segments.extend(transcript) _print('Dataset reading time: ', time.time() - tic) tic = time.time() # get_or_else required because dictionary could contain None values which we want to replace. # dict.get doesnt work in this case get_or_else = lambda dictionary, key, default: dictionary[ key] if dictionary.get(key) is not None else default for t in segments: t['ref'] = get_or_else(t, 'ref', transcripts.ref_missing) t['begin'] = get_or_else(t, 'begin', transcripts.time_missing) t['end'] = get_or_else(t, 'end', transcripts.time_missing) t['channel'] = get_or_else( t, 'channel', transcripts.channel_missing ) if not self.mono else transcripts.channel_missing transcripts.collect_speaker_names(segments, speaker_names=speaker_names or [], num_speakers=max_num_channels, set_speaker_data=True) buckets = [] grouped_segments = [] transcripts_len = [] speakers_len = [] if self.mode == AudioTextDataset.DEFAULT_MODE: groupped_transcripts = ((i, [t]) for i, t in enumerate(segments)) else: groupped_transcripts = itertools.groupby( sorted(segments, key=transcripts.group_key), transcripts.group_key) for group_key, transcript in groupped_transcripts: transcript = sorted(transcript, key=transcripts.sort_key) if self.mode == AudioTextDataset.BATCHED_CHANNELS_MODE: transcript = transcripts.join_transcript( transcript, self.mono, duration_from_transcripts=duration_from_transcripts) if exclude is not None: allowed_audio_names = set( transcripts.audio_name(t) for t in transcript if transcripts.audio_name(t) not in exclude) else: allowed_audio_names = None transcript = transcripts.prune( transcript, allowed_audio_names=allowed_audio_names, duration=( min_duration if min_duration is not None else 0.0, max_duration if max_duration is not None else 24.0 * 3600, ), #24h max_audio_file_size=max_audio_file_size) transcript = list(transcript) for t in transcript: t['example_id'] = AudioTextDataset.get_example_id(t) if len(transcript) == 0: continue bucket = bucket_fn(transcript) for t in transcript: t['bucket'] = bucket speakers_len.append( len(t['speaker']) if ( isinstance(t['speaker'], list)) else 1) buckets.append(bucket) grouped_segments.extend(transcript) transcripts_len.append(len(transcript)) _print('Dataset construction time: ', time.time() - tic) tic = time.time() self.bucket = torch.tensor(buckets, dtype=torch.short) self.audio_path = utils.TensorBackedStringArray( [t['audio_path'] for t in grouped_segments], encoding=string_array_encoding) self.ref = utils.TensorBackedStringArray( [t['ref'] for t in grouped_segments], encoding=string_array_encoding) self.begin = torch.tensor([t['begin'] for t in grouped_segments], dtype=torch.float64) self.end = torch.tensor([t['end'] for t in grouped_segments], dtype=torch.float64) self.channel = torch.tensor([t['channel'] for t in grouped_segments], dtype=torch.int8) self.example_id = utils.TensorBackedStringArray( [t['example_id'] for t in grouped_segments], encoding=string_array_encoding) if self.mode == AudioTextDataset.BATCHED_CHANNELS_MODE: self.speaker = torch.tensor([ speaker for t in grouped_segments for speaker in t['speaker'] ], dtype=torch.int64) else: self.speaker = torch.tensor( [t['speaker'] for t in grouped_segments], dtype=torch.int64) self.speaker_len = torch.tensor(speakers_len, dtype=torch.int16) self.transcript_cumlen = torch.tensor(transcripts_len, dtype=torch.int16).cumsum( dim=0, dtype=torch.int64) if pop_meta: self.meta = {} else: self.meta = {t['example_id']: t for t in grouped_segments} _print('Dataset tensors creation time: ', time.time() - tic)