Ejemplo n.º 1
0
    def test_inference_no_head(self):
        model = MobileBertModel.from_pretrained(
            "google/mobilebert-uncased").to(torch_device)
        input_ids = _long_tensor(
            [[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]])
        with torch.no_grad():
            output = model(input_ids)[0]
        expected_shape = torch.Size((1, 9, 512))
        self.assertEqual(output.shape, expected_shape)
        expected_slice = torch.tensor(
            [[
                [-2.4736526e07, 8.2691656e04, 1.6521838e05],
                [-5.7541704e-01, 3.9056022e00, 4.4011507e00],
                [2.6047359e00, 1.5677652e00, -1.7324188e-01],
            ]],
            device=torch_device,
        )

        # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a
        # ~1 difference, it's therefore not a good idea to measure using addition.
        # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the
        # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE
        lower_bound = torch.all(
            (expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE)
        upper_bound = torch.all(
            (expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE)

        self.assertTrue(lower_bound and upper_bound)
Ejemplo n.º 2
0
 def __init__(self,
              config,
              project_dim: int = 0,
              ctx_bottleneck: bool = False):
     MobileBertModel.__init__(self, config)
     assert config.hidden_size > 0, 'Encoder hidden_size can\'t be zero'
     self.encode_proj = nn.Linear(
         config.hidden_size, project_dim) if project_dim != 0 else None
     self.decode_proj = nn.Sequential(
         nn.Tanh(),
         nn.Linear(project_dim,
                   (config.hidden_size + project_dim) // 2),
         nn.Tanh(),
         nn.Linear((config.hidden_size + project_dim) //
                   2, config.hidden_size),
     ) if ctx_bottleneck else None
     self.init_weights()
    def __init__(self, num_labels=17):
        self.num_labels = num_labels
        super(MobileBertForMultiLabelSequenceClassification, self).__init__()
        self.bert = MobileBertModel.from_pretrained(
            'google/mobilebert-uncased',
            hidden_act="gelu",
            num_labels=num_labels)

        self.dropout = torch.nn.Dropout(0.1)
        self.classifier = torch.nn.Linear(512, num_labels)
Ejemplo n.º 4
0
    def create_and_check_mobilebert_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = MobileBertModel(config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        result = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
        )
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
 def __init__(self, config, num_labels=17, mobilebert = True):
     self.mobilebert = mobilebert
     if not mobilebert:
         super(BertForMultiLabelSequenceClassification, self).__init__(config)
     else:
         super(BertForMultiLabelSequenceClassification, self).__init__(config)
     self.num_labels = num_labels
     self.bert = BertModel(config) if not mobilebert else MobileBertModel.from_pretrained(
         'google/mobilebert-uncased',
         num_labels=num_labels,)
     
     self.dropout = torch.nn.Dropout( config.hidden_dropout_prob)
     self.classifier = torch.nn.Linear( config.hidden_size, num_labels)
     if not mobilebert:
         self.apply(self.init_bert_weights)
Ejemplo n.º 6
0
def Net():
    bert = MobileBertModel.from_pretrained('google/mobilebert-uncased')

    HIDDEN_DIM = 256
    OUTPUT_DIM = 1
    N_LAYERS = 2
    BIDIRECTIONAL = True
    DROPOUT = 0.25

    model = BERTGRUSentiment(bert, HIDDEN_DIM, OUTPUT_DIM, N_LAYERS,
                             BIDIRECTIONAL, DROPOUT)
    for name, param in model.named_parameters():
        if name.startswith('bert'):
            param.requires_grad = False

    return model
    def create_and_check_mobilebert_model(self, config, input_ids,
                                          token_type_ids, input_mask,
                                          sequence_labels, token_labels,
                                          choice_labels):
        model = MobileBertModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids,
                       attention_mask=input_mask,
                       token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)

        self.parent.assertListEqual(
            list(result["last_hidden_state"].size()),
            [self.batch_size, self.seq_length, self.hidden_size])
        self.parent.assertListEqual(list(result["pooler_output"].size()),
                                    [self.batch_size, self.hidden_size])
    def create_and_check_mobilebert_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = MobileBertModel(config)
        model.to(torch_device)
        model.eval()
        sequence_output, pooled_output = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        sequence_output, pooled_output = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
        )
        sequence_output, pooled_output = model(input_ids,
                                               attention_mask=input_mask,
                                               token_type_ids=token_type_ids)

        result = {
            "sequence_output": sequence_output,
            "pooled_output": pooled_output,
        }
        self.parent.assertListEqual(
            list(result["sequence_output"].size()),
            [self.batch_size, self.seq_length, self.hidden_size])
        self.parent.assertListEqual(list(result["pooled_output"].size()),
                                    [self.batch_size, self.hidden_size])
Ejemplo n.º 9
0
 def test_model_from_pretrained(self):
     for model_name in MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
         model = MobileBertModel.from_pretrained(model_name)
         self.assertIsNotNone(model)