Ejemplo n.º 1
0
    def create_and_check_mobilebert_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = MobileBertModel(config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        result = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
        )
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
    def create_and_check_mobilebert_model(self, config, input_ids,
                                          token_type_ids, input_mask,
                                          sequence_labels, token_labels,
                                          choice_labels):
        model = MobileBertModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids,
                       attention_mask=input_mask,
                       token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)

        self.parent.assertListEqual(
            list(result["last_hidden_state"].size()),
            [self.batch_size, self.seq_length, self.hidden_size])
        self.parent.assertListEqual(list(result["pooler_output"].size()),
                                    [self.batch_size, self.hidden_size])
    def create_and_check_mobilebert_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = MobileBertModel(config)
        model.to(torch_device)
        model.eval()
        sequence_output, pooled_output = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        sequence_output, pooled_output = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
        )
        sequence_output, pooled_output = model(input_ids,
                                               attention_mask=input_mask,
                                               token_type_ids=token_type_ids)

        result = {
            "sequence_output": sequence_output,
            "pooled_output": pooled_output,
        }
        self.parent.assertListEqual(
            list(result["sequence_output"].size()),
            [self.batch_size, self.seq_length, self.hidden_size])
        self.parent.assertListEqual(list(result["pooled_output"].size()),
                                    [self.batch_size, self.hidden_size])