Ejemplo n.º 1
0
 def __init__(self, cus, accounts):
     self.cus = util_data.ProjectData(cus).data[[
         self.number, self.name, self.city, self.state, self.site, self.main
     ]]
     self.accounts = util_data.ProjectData(accounts).data[[
         self.number, self.assets
     ]]
     self.merge()
Ejemplo n.º 2
0
 def __init__(self, project, kernel='linear', C=1, gamma=0.1):
     self.project = util_data.ProjectData(project)
     self.kernel = kernel
     self.C = C
     self.gamma = gamma
     self.createClassifier()
     self.fitData()
     self.predict()
     self.getAccuracy()
Ejemplo n.º 3
0
 def __init__(self, banks):
     self.banks = util_data.ProjectData(banks).data[[
         self.number, self.name, self.site, self.main, self.branches,
         self.assets
     ]]
     # self.banks.columns = ['bankID','name','charter','location','branches', 'assets']
     self.banks.columns = [
         'name', 'rank', 'id', 'location', 'charter', 'assets',
         'assets_dom', 'assets_dom_pct', 'assets_cum_pct', 'branches',
         'branches_for', 'ibf', 'owned_for_pct'
     ]
     self.banks.apply(lambda x: pd.to_numeric(x, errors='ignore'))
Ejemplo n.º 4
0
 def __init__(self,
              project,
              split=False,
              score=False,
              silhouette=False,
              results=False,
              params={}):
     self.DF = util_data.ProjectData(project).DF  # get datasets
     self.preprocessData()
     logger.info('params: ' + str(params))
     if silhouette: self.fitSilhouette()
     if score: self.fitNscore(params)
     if results: print(self.__repr__())
Ejemplo n.º 5
0
 def __init__(self, project, split=False, score=False):
     self.project = util_data.ProjectData(project)
     # self.preprocessData()
     if split: self.splitTrainTest()
     if score: self.fitNscore()
Ejemplo n.º 6
0
 def __init__(self, project):
     self.bag = util_data.ProjectData(project)