def __init__(self, cus, accounts): self.cus = util_data.ProjectData(cus).data[[ self.number, self.name, self.city, self.state, self.site, self.main ]] self.accounts = util_data.ProjectData(accounts).data[[ self.number, self.assets ]] self.merge()
def __init__(self, project, kernel='linear', C=1, gamma=0.1): self.project = util_data.ProjectData(project) self.kernel = kernel self.C = C self.gamma = gamma self.createClassifier() self.fitData() self.predict() self.getAccuracy()
def __init__(self, banks): self.banks = util_data.ProjectData(banks).data[[ self.number, self.name, self.site, self.main, self.branches, self.assets ]] # self.banks.columns = ['bankID','name','charter','location','branches', 'assets'] self.banks.columns = [ 'name', 'rank', 'id', 'location', 'charter', 'assets', 'assets_dom', 'assets_dom_pct', 'assets_cum_pct', 'branches', 'branches_for', 'ibf', 'owned_for_pct' ] self.banks.apply(lambda x: pd.to_numeric(x, errors='ignore'))
def __init__(self, project, split=False, score=False, silhouette=False, results=False, params={}): self.DF = util_data.ProjectData(project).DF # get datasets self.preprocessData() logger.info('params: ' + str(params)) if silhouette: self.fitSilhouette() if score: self.fitNscore(params) if results: print(self.__repr__())
def __init__(self, project, split=False, score=False): self.project = util_data.ProjectData(project) # self.preprocessData() if split: self.splitTrainTest() if score: self.fitNscore()
def __init__(self, project): self.bag = util_data.ProjectData(project)