Ejemplo n.º 1
0
        def proc_netScale(self, im, cropSz, poseImSz, bodyPt):
		#Crop the image at different scales
	        t = time.time()	
		imData  = np.zeros((len(LIST_SCALES), cropSz, cropSz, 3))
		scData  = np.zeros((len(LIST_SCALES), 2))
		posData = np.zeros((len(LIST_SCALES), 2))
		for i,s in enumerate(LIST_SCALES):
			imData[i], scs, crpPos = imu.centered_crop(cropSz, copy.deepcopy(im), bodyPt, s, returnScale=True)
			scData[i]  = np.array(scs).reshape(1,2)	
			posData[i] = np.array(crpPos).reshape(1,2)
	
                print('crop time: {:.3f}s').format(time.time() - t)
		#Use the scale net to find the best scale
	        t = time.time()	
                scaleOp  = self.netScale_.forward(blobs=['fc-op'], data=imData)
                print('netScale time: {:.3f}s').format(time.time() - t)
		scaleIdx = scaleOp['fc-op'].squeeze().argmax()
		scale    = LIST_SCALES[scaleIdx]
		#Scale to use to return the image in the original space
		oScale   = scData[scaleIdx]
		#Original location of the cropped image
		oPos     = posData[scaleIdx]
		#Prepare image for pose prediction	
		imScale  = imData[scaleIdx]
                print(scaleIdx)
                print(len(imData))
		xSt, ySt = (cropSz - poseImSz)/2, (cropSz - poseImSz)/2
		xEn, yEn = xSt + poseImSz, ySt + poseImSz 
		imScale  = imScale[ySt:yEn, xSt:xEn,:].reshape((1,poseImSz,poseImSz,3))
                return imScale, xSt, ySt, oPos, oScale, scaleIdx	
Ejemplo n.º 2
0
        def proc_fixedScale(self, im, cropSz, poseImSz, bodyPt, scaleIdx):
                imScale  = np.zeros((cropSz, cropSz, 3))
                oScale  = np.zeros((2))
                oPos = np.zeros((2))
                scale = LIST_SCALES[scaleIdx]
		imScale, scs, crpPos = imu.centered_crop(cropSz, copy.deepcopy(im), bodyPt, scale, returnScale=True)
		oScale = np.array(scs).reshape(1,2)	
		oPos = np.array(crpPos).reshape(1,2)
		xSt, ySt = (cropSz - poseImSz)/2, (cropSz - poseImSz)/2
		xEn, yEn = xSt + poseImSz, ySt + poseImSz 
		imScale  = imScale[ySt:yEn, xSt:xEn,:].reshape((1,poseImSz,poseImSz,3))
                return imScale, xSt, ySt, oPos, oScale, scaleIdx	
Ejemplo n.º 3
0
    def predict(self,
                imName='./test_images/mpii-test-079555750.jpg',
                bodyPt=(249, 249),
                returnIm=False):
        '''
			imName  : image file name for which the pose needs to be predicted
			bodyPt  : A point on the body of the person (torso) for whom the pose 
							  is to be predicted
			returnIm: If True, return the image also
		'''
        cropSz, poseImSz = self.cropSz_, self.poseImSz_
        #Read the image
        if (isinstance(imName, str)):
            im = scm.imread(imName)
        else:
            im = imName

        #Crop the image at different scales
        imData = np.zeros((len(LIST_SCALES), cropSz, cropSz, 3))
        scData = np.zeros((len(LIST_SCALES), 2))
        posData = np.zeros((len(LIST_SCALES), 2))
        for i, s in enumerate(LIST_SCALES):
            imData[i], scs, crpPos = imu.centered_crop(cropSz,
                                                       copy.deepcopy(im),
                                                       bodyPt,
                                                       s,
                                                       returnScale=True)
            scData[i] = np.array(scs).reshape(1, 2)
            posData[i] = np.array(crpPos).reshape(1, 2)

        #Use the scale net to find the best scale
        scaleOp = self.netScale_.forward(blobs=['fc-op'], data=imData)
        scaleIdx = scaleOp['fc-op'].squeeze().argmax()
        scale = LIST_SCALES[scaleIdx]
        #Scale to use to return the image in the original space
        oScale = scData[scaleIdx]
        #Original location of the cropped image
        oPos = posData[scaleIdx]

        #Prepare image for pose prediction
        imScale = imData[scaleIdx]
        xSt, ySt = (cropSz - poseImSz) / 2, (cropSz - poseImSz) / 2
        xEn, yEn = xSt + poseImSz, ySt + poseImSz
        imScale = imScale[ySt:yEn, xSt:xEn, :].reshape(
            (1, poseImSz, poseImSz, 3))

        #Seed pose
        currPose = np.zeros((1, 17, 2, 1)).astype(np.float32)
        for i in range(16):
            currPose[0, i, 0] = copy.deepcopy(self.seedPose_[0, i] - xSt)
            currPose[0, i, 1] = copy.deepcopy(self.seedPose_[1, i] - ySt)
        #The marking point is the center of the image
        currPose[0, 16, 0] = poseImSz / 2
        currPose[0, 16, 1] = poseImSz / 2

        #Dummy labels
        labels = np.zeros((1, 16, 2, 1)).astype(np.float32)

        #Predict Pose
        for step in range(4):
            poseOp = self.netPose_.forward(blobs=['cls3_fc'],
                                           image=imScale,
                                           kp_pos=copy.deepcopy(currPose),
                                           label=labels)
            kPred = copy.deepcopy(poseOp['cls3_fc'].squeeze())
            for i in range(16):
                dx, dy = kPred[i], kPred[16 + i]
                currPose[0, i, 0] = currPose[0, i, 0] + self.mxStepSz_ * dx
                currPose[0, i, 1] = currPose[0, i, 1] + self.mxStepSz_ * dy

        #Convert the pose in the original image coordinated
        origPose = (currPose.squeeze() +
                    np.array([xSt, ySt]).reshape(1, 2)) * oScale + oPos

        if returnIm:
            #return origPose, copy.deepcopy(currPose), imScale[0]
            return origPose, im
        else:
            return origPose, copy.deepcopy(currPose)
Ejemplo n.º 4
0
	def predict(self, imName='./test_images/mpii-test-079555750.jpg', 
							bodyPt=(249,249), returnIm=False):
		'''
			imName  : image file name for which the pose needs to be predicted
			bodyPt  : A point on the body of the person (torso) for whom the pose 
							  is to be predicted
			returnIm: If True, return the image also
		'''
		cropSz, poseImSz = self.cropSz_, self.poseImSz_
		#Read the image
                if(isinstance(imName, str)):
                        im = scm.imread(imName)
                else:
                        im = imName
		
		#Crop the image at different scales
		imData  = np.zeros((len(LIST_SCALES), cropSz, cropSz, 3))
		scData  = np.zeros((len(LIST_SCALES), 2))
		posData = np.zeros((len(LIST_SCALES), 2))
		for i,s in enumerate(LIST_SCALES):
			imData[i], scs, crpPos = imu.centered_crop(cropSz, copy.deepcopy(im), bodyPt, s, 
												returnScale=True)
			scData[i]  = np.array(scs).reshape(1,2)	
			posData[i] = np.array(crpPos).reshape(1,2)
	
		#Use the scale net to find the best scale
		scaleOp  = self.netScale_.forward(blobs=['fc-op'], data=imData)
		scaleIdx = scaleOp['fc-op'].squeeze().argmax()
		scale    = LIST_SCALES[scaleIdx]
		#Scale to use to return the image in the original space
		oScale   = scData[scaleIdx]
		#Original location of the cropped image
		oPos     = posData[scaleIdx]

		#Prepare image for pose prediction	
		imScale  = imData[scaleIdx]
		xSt, ySt = (cropSz - poseImSz)/2, (cropSz - poseImSz)/2
		xEn, yEn = xSt + poseImSz, ySt + poseImSz 
		imScale  = imScale[ySt:yEn, xSt:xEn,:].reshape((1,poseImSz,poseImSz,3))
	
		#Seed pose
		currPose        = np.zeros((1,17,2,1)).astype(np.float32)
		for i in range(16):
			currPose[0,i,0] = copy.deepcopy(self.seedPose_[0,i] - xSt)
			currPose[0,i,1] = copy.deepcopy(self.seedPose_[1,i] - ySt)
		#The marking point is the center of the image
		currPose[0, 16, 0] = poseImSz / 2
		currPose[0, 16, 1] = poseImSz / 2
	
		#Dummy labels	
		labels = np.zeros((1,16,2,1)).astype(np.float32)

		#Predict Pose
		for step in range(4):
			poseOp = self.netPose_.forward(blobs=['cls3_fc'], image=imScale,
							 kp_pos=copy.deepcopy(currPose), label=labels)
			kPred    = copy.deepcopy(poseOp['cls3_fc'].squeeze())
			for i in range(16):
				dx, dy = kPred[i], kPred[16 + i]
				currPose[0,i,0] = currPose[0,i,0] + self.mxStepSz_ * dx
				currPose[0,i,1] = currPose[0,i,1] + self.mxStepSz_ * dy
		
		#Convert the pose in the original image coordinated
		origPose = (currPose.squeeze() +  np.array([xSt, ySt]).reshape(1,2)) * oScale + oPos

		if returnIm:
			#return origPose, copy.deepcopy(currPose), imScale[0]
			return origPose, im
		else:
			return origPose, copy.deepcopy(currPose)