Ejemplo n.º 1
0
 def create_collection(self, dimension, data_type=DataType.FLOAT_VECTOR, auto_id=False,
                       collection_name=None, other_fields=None):
     self._dimension = dimension
     if not collection_name:
         collection_name = self._collection_name
     vec_field_name = utils.get_default_field_name(data_type)
     fields = [
         {"name": vec_field_name, "type": data_type, "params": {"dim": dimension}},
         {"name": "id", "type": DataType.INT64, "is_primary": True}
     ]
     if other_fields:
         other_fields = other_fields.split(",")
         for other_field_name in other_fields:
             if other_field_name.startswith("int"):
                 field_type = DataType.INT64
             elif other_field_name.startswith("float"):
                 field_type = DataType.FLOAT
             elif other_field_name.startswith("double"):
                 field_type = DataType.DOUBLE
             else:
                 raise Exception("Field name not supported")
             fields.append({"name": other_field_name, "type": field_type})
     create_param = {
         "fields": fields,
         "auto_id": auto_id}
     try:
         self._milvus.create_collection(collection_name, create_param)
         logger.info("Create collection: <%s> successfully" % collection_name)
     except Exception as e:
         logger.error(str(e))
         raise
Ejemplo n.º 2
0
 def load_query_rand(self, nq_max=100):
     # for ivf search
     dimension = 128
     top_k = random.randint(1, 100)
     nq = random.randint(1, nq_max)
     nprobe = random.randint(1, 100)
     search_param = {"nprobe": nprobe}
     query_vectors = [[random.random() for _ in range(dimension)] for _ in range(nq)]
     metric_type = random.choice(["l2", "ip"])
     logger.info("%s, Search nq: %d, top_k: %d, nprobe: %d" % (self._collection_name, nq, top_k, nprobe))
     vec_field_name = utils.get_default_field_name()
     vector_query = {"vector": {vec_field_name: {
         "topk": top_k,
         "query": query_vectors,
         "metric_type": utils.metric_type_trans(metric_type),
         "params": search_param}
     }}
     self.load_and_query(vector_query)
Ejemplo n.º 3
0
 def create_collection(self,
                       dimension,
                       data_type=DataType.FLOAT_VECTOR,
                       auto_id=False,
                       collection_name=None,
                       other_fields=None):
     self._dimension = dimension
     if not collection_name:
         collection_name = self._collection_name
     vec_field_name = utils.get_default_field_name(data_type)
     fields = [{
         "name": vec_field_name,
         "type": data_type,
         "params": {
             "dim": dimension
         }
     }]
     if other_fields:
         other_fields = other_fields.split(",")
         if "int" in other_fields:
             fields.append({
                 "name": utils.DEFAULT_INT_FIELD_NAME,
                 "type": DataType.INT64
             })
         if "float" in other_fields:
             fields.append({
                 "name": utils.DEFAULT_FLOAT_FIELD_NAME,
                 "type": DataType.FLOAT
             })
     create_param = {"fields": fields, "auto_id": auto_id}
     try:
         self._milvus.create_collection(collection_name, create_param)
         logger.info("Create collection: <%s> successfully" %
                     collection_name)
     except Exception as e:
         logger.error(str(e))
         raise
Ejemplo n.º 4
0
    def run(self, run_type, collection):
        logger.debug(run_type)
        logger.debug(collection)
        collection_name = collection["collection_name"] if "collection_name" in collection else None
        milvus_instance = MilvusClient(collection_name=collection_name, host=self.host)

        # TODO: removed
        # self.env_value = milvus_instance.get_server_config()
        # ugly implemention
        # self.env_value = utils.convert_nested(self.env_value)
        # self.env_value.pop("logs")
        # self.env_value.pop("network")
        self.env_value = collection

        if run_type == "insert_performance":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            ni_per = collection["ni_per"]
            build_index = collection["build_index"]
            if milvus_instance.exists_collection():
                milvus_instance.drop()
                time.sleep(10)
            index_info = {}
            search_params = {}
            vector_type = self.get_vector_type(data_type)
            other_fields = collection["other_fields"] if "other_fields" in collection else None
            milvus_instance.create_collection(dimension, data_type=vector_type,
                                              other_fields=other_fields)
            if build_index is True:
                index_type = collection["index_type"]
                index_param = collection["index_param"]
                index_info = {
                    "index_type": index_type,
                    "index_param": index_param
                }
                index_field_name = utils.get_default_field_name(vector_type)
                milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param)
                logger.debug(milvus_instance.describe_index())
            res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per)
            flush_time = 0.0
            if "flush" in collection and collection["flush"] == "no":
                logger.debug("No manual flush")
            else:
                start_time = time.time()
                milvus_instance.flush()
                flush_time = time.time() - start_time
                logger.debug(milvus_instance.count())
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name,
                "other_fields": other_fields,
                "ni_per": ni_per
            }
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info,
                                         search_params)
            total_time = res["total_time"]
            build_time = 0
            if build_index is True:
                logger.debug("Start build index for last file")
                start_time = time.time()
                milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param)
                build_time = time.time() - start_time
                total_time = total_time + build_time
            metric.metrics = {
                "type": run_type,
                "value": {
                    "total_time": total_time,
                    "qps": res["qps"],
                    "ni_time": res["ni_time"],
                    "flush_time": flush_time,
                    "build_time": build_time
                }
            }
            report(metric)

        elif run_type == "build_performance":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            index_type = collection["index_type"]
            index_param = collection["index_param"]
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            index_info = {
                "index_type": index_type,
                "index_param": index_param
            }
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            search_params = {}
            vector_type = self.get_vector_type(data_type)
            index_field_name = utils.get_default_field_name(vector_type)
            start_time = time.time()
            # drop index
            logger.debug("Drop index")
            milvus_instance.drop_index(index_field_name)
            # start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            # TODO: need to check
            milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param)
            logger.debug(milvus_instance.describe_index())
            logger.debug(milvus_instance.count())
            end_time = time.time()
            # end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info,
                                         search_params)
            metric.metrics = {
                "type": "build_performance",
                "value": {
                    "build_time": round(end_time - start_time, 1),
                }
            }
            report(metric)

        elif run_type == "delete_performance":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            ni_per = collection["ni_per"]
            auto_flush = collection["auto_flush"] if "auto_flush" in collection else True
            search_params = {}
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            if not milvus_instance.exists_collection():
                logger.error(milvus_instance.show_collections())
                logger.error("Table name: %s not existed" % collection_name)
                return
            length = milvus_instance.count()
            logger.info(length)
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            ids = [i for i in range(length)]
            loops = int(length / ni_per)
            milvus_instance.load_collection()
            # TODO: remove
            # start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            start_time = time.time()
            # if auto_flush is False:
            #     milvus_instance.set_config("storage", "auto_flush_interval", BIG_FLUSH_INTERVAL)
            for i in range(loops):
                delete_ids = ids[i * ni_per: i * ni_per + ni_per]
                logger.debug("Delete %d - %d" % (delete_ids[0], delete_ids[-1]))
                milvus_instance.delete(delete_ids)
                logger.debug("Table row counts: %d" % milvus_instance.count())
            logger.debug("Table row counts: %d" % milvus_instance.count())
            start_flush_time = time.time()
            milvus_instance.flush()
            end_flush_time = time.time()
            end_time = time.time()
            # end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            logger.debug("Table row counts: %d" % milvus_instance.count())
            # milvus_instance.set_config("storage", "auto_flush_interval", DEFAULT_FLUSH_INTERVAL)
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info,
                                         search_params)
            delete_time = round(end_time - start_time, 1)
            metric.metrics = {
                "type": "delete_performance",
                "value": {
                    "delete_time": delete_time,
                    "qps": round(collection_size / delete_time, 1)
                }
            }
            if auto_flush is False:
                flush_time = round(end_flush_time - start_flush_time, 1)
                metric.metrics["value"].update({"flush_time": flush_time})
            report(metric)

        elif run_type == "get_ids_performance":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            ids_length_per_segment = collection["ids_length_per_segment"]
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            search_params = {}
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            for ids_num in ids_length_per_segment:
                segment_num, get_ids = milvus_instance.get_rand_ids_each_segment(ids_num)
                start_time = time.time()
                get_res = milvus_instance.get_entities(get_ids)
                total_time = time.time() - start_time
                avg_time = total_time / segment_num
                run_params = {"ids_num": ids_num}
                logger.info(
                    "Segment num: %d, ids num per segment: %d, run_time: %f" % (segment_num, ids_num, total_time))
                metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info,
                                             index_info, search_params, run_params=run_params)
                metric.metrics = {
                    "type": run_type,
                    "value": {
                        "total_time": round(total_time, 1),
                        "avg_time": round(avg_time, 1)
                    }
                }
                report(metric)

        elif run_type == "search_performance":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            run_count = collection["run_count"]
            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            # filter_query = collection["filter"] if "filter" in collection else None
            filters = collection["filters"] if "filters" in collection else []
            filter_query = []
            search_params = collection["search_params"]
            fields = self.get_fields(milvus_instance, collection_name)
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
                "fields": fields
            }
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return

            vector_type = self.get_vector_type(data_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            milvus_instance.load_collection()
            logger.info("Start warm up query")
            res = self.do_query(milvus_instance, collection_name, vec_field_name, [1], [1], 2,
                                search_param=search_params[0], filter_query=filter_query)
            logger.info("End warm up query")
            for search_param in search_params:
                logger.info("Search param: %s" % json.dumps(search_param))
                if not filters:
                    filters.append(None)
                for filter in filters:
                    filter_param = []
                    if isinstance(filter, dict) and "range" in filter:
                        filter_query.append(eval(filter["range"]))
                        filter_param.append(filter["range"])
                    if isinstance(filter, dict) and "term" in filter:
                        filter_query.append(eval(filter["term"]))
                        filter_param.append(filter["term"])
                    logger.info("filter param: %s" % json.dumps(filter_param))
                    res = self.do_query(milvus_instance, collection_name, vec_field_name, top_ks, nqs, run_count,
                                        search_param, filter_query=filter_query)
                    headers = ["Nq/Top-k"]
                    headers.extend([str(top_k) for top_k in top_ks])
                    logger.info("Search param: %s" % json.dumps(search_param))
                    utils.print_table(headers, nqs, res)
                    for index_nq, nq in enumerate(nqs):
                        for index_top_k, top_k in enumerate(top_ks):
                            search_param_group = {
                                "nq": nq,
                                "topk": top_k,
                                "search_param": search_param,
                                "filter": filter_param
                            }
                            search_time = res[index_nq][index_top_k]
                            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname,
                                                         collection_info, index_info, search_param_group)
                            metric.metrics = {
                                "type": "search_performance",
                                "value": {
                                    "search_time": search_time
                                }
                            }
                            report(metric)

        elif run_type == "locust_insert_stress":
            pass

        elif run_type in ["locust_search_performance", "locust_insert_performance", "locust_mix_performance"]:
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            ni_per = collection["ni_per"]
            build_index = collection["build_index"]
            if milvus_instance.exists_collection():
                milvus_instance.drop()
                time.sleep(10)
            index_info = {}
            search_params = {}
            vector_type = self.get_vector_type(data_type)
            index_field_name = utils.get_default_field_name(vector_type)
            milvus_instance.create_collection(dimension, data_type=vector_type, other_fields=None)
            vector_type = self.get_vector_type(data_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            if build_index is True:
                index_type = collection["index_type"]
                index_param = collection["index_param"]
                index_info = {
                    "index_type": index_type,
                    "index_param": index_param
                }
                milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param)
                logger.debug(milvus_instance.describe_index())
            if run_type in ["locust_search_performance", "locust_mix_performance"]:
                res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per)
                if "flush" in collection and collection["flush"] == "no":
                    logger.debug("No manual flush")
                else:
                    milvus_instance.flush()
                if build_index is True:
                    logger.debug("Start build index for last file")
                    milvus_instance.create_index(index_field_name, index_type, metric_type, _async=True,
                                                 index_param=index_param)
                    logger.debug(milvus_instance.describe_index())
                logger.debug("Table row counts: %d" % milvus_instance.count())
                milvus_instance.load_collection()
                logger.info("Start warm up query")
                for i in range(2):
                    res = self.do_query(milvus_instance, collection_name, vec_field_name, [1], [1], 2,
                                        search_param={"nprobe": 16})
                logger.info("End warm up query")
            real_metric_type = utils.metric_type_trans(metric_type)
            ### spawn locust requests
            task = collection["task"]
            connection_type = "single"
            connection_num = task["connection_num"]
            if connection_num > 1:
                connection_type = "multi"
            clients_num = task["clients_num"]
            hatch_rate = task["hatch_rate"]
            during_time = utils.timestr_to_int(task["during_time"])
            task_types = task["types"]
            run_params = {"tasks": {}, "clients_num": clients_num, "spawn_rate": hatch_rate, "during_time": during_time}
            for task_type in task_types:
                run_params["tasks"].update({task_type["type"]: task_type["weight"] if "weight" in task_type else 1})

            # . collect stats
            locust_stats = locust_user.locust_executor(self.host, self.port, collection_name,
                                                       connection_type=connection_type, run_params=run_params)
            logger.info(locust_stats)
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info,
                                         search_params)
            metric.metrics = {
                "type": run_type,
                "value": locust_stats}
            report(metric)

        elif run_type == "search_ids_stability":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            search_params = collection["search_params"]
            during_time = collection["during_time"]
            ids_length = collection["ids_length"]
            ids = collection["ids"]
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            g_top_k = int(collection["top_ks"].split("-")[1])
            l_top_k = int(collection["top_ks"].split("-")[0])
            g_id = int(ids.split("-")[1])
            l_id = int(ids.split("-")[0])
            g_id_length = int(ids_length.split("-")[1])
            l_id_length = int(ids_length.split("-")[0])

            milvus_instance.load_collection()
            # start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            # logger.debug(start_mem_usage)
            start_time = time.time()
            while time.time() < start_time + during_time * 60:
                search_param = {}
                top_k = random.randint(l_top_k, g_top_k)
                ids_num = random.randint(l_id_length, g_id_length)
                ids_param = [random.randint(l_id_length, g_id_length) for _ in range(ids_num)]
                for k, v in search_params.items():
                    search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1]))
                logger.debug("Query top-k: %d, ids_num: %d, param: %s" % (top_k, ids_num, json.dumps(search_param)))
                result = milvus_instance.query_ids(top_k, ids_param, search_param=search_param)
            # end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info,
                                         {})
            metric.metrics = {
                "type": "search_ids_stability",
                "value": {
                    "during_time": during_time,
                }
            }
            report(metric)

        # for sift/deep datasets
        # TODO: enable
        elif run_type == "accuracy":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            search_params = collection["search_params"]
            # mapping to search param list
            search_params = self.generate_combinations(search_params)

            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            milvus_instance.load_collection()
            true_ids_all = self.get_groundtruth_ids(collection_size)
            vector_type = self.get_vector_type(data_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            for search_param in search_params:
                headers = ["Nq/Top-k"]
                res = []
                for nq in nqs:
                    for top_k in top_ks:
                        tmp_res = []
                        search_param_group = {
                            "nq": nq,
                            "topk": top_k,
                            "search_param": search_param,
                            "metric_type": metric_type
                        }
                        logger.info("Query params: %s" % json.dumps(search_param_group))
                        result_ids = self.do_query_ids(milvus_instance, collection_name, vec_field_name, top_k, nq,
                                                       search_param=search_param)
                        # mem_used = milvus_instance.get_mem_info()["memory_used"]
                        acc_value = self.get_recall_value(true_ids_all[:nq, :top_k].tolist(), result_ids)
                        logger.info("Query accuracy: %s" % acc_value)
                        tmp_res.append(acc_value)
                        # logger.info("Memory usage: %s" % mem_used)
                        metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info,
                                                     index_info, search_param_group)
                        metric.metrics = {
                            "type": "accuracy",
                            "value": {
                                "acc": acc_value
                            }
                        }
                        report(metric)
                        # logger.info("Memory usage: %s" % mem_used)
                    res.append(tmp_res)
                headers.extend([str(top_k) for top_k in top_ks])
                logger.info("Search param: %s" % json.dumps(search_param))
                utils.print_table(headers, nqs, res)

        elif run_type == "ann_accuracy":
            hdf5_source_file = collection["source_file"]
            collection_name = collection["collection_name"]
            index_types = collection["index_types"]
            index_params = collection["index_params"]
            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            search_params = collection["search_params"]
            # mapping to search param list
            search_params = self.generate_combinations(search_params)
            # mapping to index param list
            index_params = self.generate_combinations(index_params)

            data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name)
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            dataset = utils.get_dataset(hdf5_source_file)
            if milvus_instance.exists_collection(collection_name):
                logger.info("Re-create collection: %s" % collection_name)
                milvus_instance.drop()
                time.sleep(DELETE_INTERVAL_TIME)
            true_ids = np.array(dataset["neighbors"])
            vector_type = self.get_vector_type_from_metric(metric_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            real_metric_type = utils.metric_type_trans(metric_type)

            # re-create collection
            if milvus_instance.exists_collection(collection_name):
                milvus_instance.drop()
                time.sleep(DELETE_INTERVAL_TIME)
            milvus_instance.create_collection(dimension, data_type=vector_type)
            insert_vectors = self.normalize(metric_type, np.array(dataset["train"]))
            if len(insert_vectors) != dataset["train"].shape[0]:
                raise Exception("Row count of insert vectors: %d is not equal to dataset size: %d" % (
                len(insert_vectors), dataset["train"].shape[0]))
            logger.debug("The row count of entities to be inserted: %d" % len(insert_vectors))
            # Insert batch once
            # milvus_instance.insert(insert_vectors)
            loops = len(insert_vectors) // INSERT_INTERVAL + 1
            for i in range(loops):
                start = i * INSERT_INTERVAL
                end = min((i + 1) * INSERT_INTERVAL, len(insert_vectors))
                if start < end:
                    tmp_vectors = insert_vectors[start:end]
                    ids = [i for i in range(start, end)]
                    if not isinstance(tmp_vectors, list):
                        entities = milvus_instance.generate_entities(tmp_vectors.tolist(), ids)
                        res_ids = milvus_instance.insert(entities, ids=ids)
                    else:
                        entities = milvus_instance.generate_entities(tmp_vectors, ids)
                        res_ids = milvus_instance.insert(entities, ids=ids)
                    assert res_ids == ids
            milvus_instance.flush()
            res_count = milvus_instance.count()
            logger.info("Table: %s, row count: %d" % (collection_name, res_count))
            if res_count != len(insert_vectors):
                raise Exception("Table row count is not equal to insert vectors")
            for index_type in index_types:
                for index_param in index_params:
                    logger.debug("Building index with param: %s" % json.dumps(index_param))
                    if milvus_instance.get_config("cluster.enable") == "true":
                        milvus_instance.create_index(vec_field_name, index_type, metric_type, _async=True,
                                                     index_param=index_param)
                    else:
                        milvus_instance.create_index(vec_field_name, index_type, metric_type,
                                                     index_param=index_param)
                    logger.info(milvus_instance.describe_index())
                    logger.info("Start load collection: %s" % collection_name)
                    milvus_instance.load_collection()
                    logger.info("End load collection: %s" % collection_name)
                    index_info = {
                        "index_type": index_type,
                        "index_param": index_param
                    }
                    logger.debug(index_info)
                    warm_up = True
                    for search_param in search_params:
                        for nq in nqs:
                            query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq]))
                            if not isinstance(query_vectors, list):
                                query_vectors = query_vectors.tolist()
                            for top_k in top_ks:
                                search_param_group = {
                                    "nq": len(query_vectors),
                                    "topk": top_k,
                                    "search_param": search_param,
                                    "metric_type": metric_type
                                }
                                logger.debug(search_param_group)
                                vector_query = {"vector": {vec_field_name: {
                                    "topk": top_k,
                                    "query": query_vectors,
                                    "metric_type": real_metric_type,
                                    "params": search_param}
                                }}
                                for i in range(2):
                                    result = milvus_instance.query(vector_query)
                                warm_up = False
                                logger.info("End warm up")
                                result = milvus_instance.query(vector_query)
                                result_ids = milvus_instance.get_ids(result)
                                acc_value = self.get_recall_value(true_ids[:nq, :top_k].tolist(), result_ids)
                                logger.info("Query ann_accuracy: %s" % acc_value)
                                metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname,
                                                             collection_info, index_info, search_param_group)
                                metric.metrics = {
                                    "type": "ann_accuracy",
                                    "value": {
                                        "acc": acc_value
                                    }
                                }
                                report(metric)

        elif run_type == "search_stability":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            search_params = collection["search_params"]
            during_time = collection["during_time"]
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            g_top_k = int(collection["top_ks"].split("-")[1])
            g_nq = int(collection["nqs"].split("-")[1])
            l_top_k = int(collection["top_ks"].split("-")[0])
            l_nq = int(collection["nqs"].split("-")[0])
            milvus_instance.load_collection()
            # start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            # logger.debug(start_mem_usage)
            start_row_count = milvus_instance.count()
            logger.debug(milvus_instance.describe_index())
            logger.info(start_row_count)
            vector_type = self.get_vector_type(data_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            real_metric_type = utils.metric_type_trans(metric_type)
            start_time = time.time()
            while time.time() < start_time + during_time * 60:
                search_param = {}
                top_k = random.randint(l_top_k, g_top_k)
                nq = random.randint(l_nq, g_nq)
                for k, v in search_params.items():
                    search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1]))
                query_vectors = [[random.random() for _ in range(dimension)] for _ in range(nq)]
                logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param)))
                vector_query = {"vector": {vec_field_name: {
                    "topk": top_k,
                    "query": query_vectors[:nq],
                    "metric_type": real_metric_type,
                    "params": search_param}
                }}
                milvus_instance.query(vector_query)
            # end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info,
                                         {})
            metric.metrics = {
                "type": "search_stability",
                "value": {
                    "during_time": during_time,
                }
            }
            report(metric)

        elif run_type == "loop_stability":
            # init data
            milvus_instance.clean_db()
            pull_interval = collection["pull_interval"]
            collection_num = collection["collection_num"]
            concurrent = collection["concurrent"] if "concurrent" in collection else False
            concurrent_num = collection_num
            dimension = collection["dimension"] if "dimension" in collection else 128
            insert_xb = collection["insert_xb"] if "insert_xb" in collection else 100000
            index_types = collection["index_types"] if "index_types" in collection else ['ivf_sq8']
            index_param = {"nlist": 256}
            collection_names = []
            milvus_instances_map = {}
            insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)]
            ids = [i for i in range(insert_xb)]
            # initialize and prepare
            for i in range(collection_num):
                name = utils.get_unique_name(prefix="collection_%d_" % i)
                collection_names.append(name)
                metric_type = random.choice(["l2", "ip"])
                # default float_vector
                milvus_instance = MilvusClient(collection_name=name, host=self.host)
                milvus_instance.create_collection(dimension, other_fields=None)
                index_type = random.choice(index_types)
                field_name = utils.get_default_field_name()
                milvus_instance.create_index(field_name, index_type, metric_type, index_param=index_param)
                logger.info(milvus_instance.describe_index())
                insert_vectors = utils.normalize(metric_type, insert_vectors)
                entities = milvus_instance.generate_entities(insert_vectors, ids)
                res_ids = milvus_instance.insert(entities, ids=ids)
                milvus_instance.flush()
                milvus_instances_map.update({name: milvus_instance})
                logger.info(milvus_instance.describe_index())

                # loop time unit: min -> s
            pull_interval_seconds = pull_interval * 60
            tasks = ["insert_rand", "query_rand", "flush"]
            i = 1
            while True:
                logger.info("Loop time: %d" % i)
                start_time = time.time()
                while time.time() - start_time < pull_interval_seconds:
                    if concurrent:
                        threads = []
                        for name in collection_names:
                            task_name = random.choice(tasks)
                            task_run = getattr(milvus_instances_map[name], task_name)
                            t = threading.Thread(target=task_run, args=())
                            threads.append(t)
                            t.start()
                        for t in threads:
                            t.join()
                        # with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor:
                        #     future_results = {executor.submit(getattr(milvus_instances_map[mp[j][0]], mp[j][1])): j for j in range(concurrent_num)}
                        #     for future in concurrent.futures.as_completed(future_results):
                        #         future.result()
                    else:
                        tmp_collection_name = random.choice(collection_names)
                        task_name = random.choice(tasks)
                        logger.info(tmp_collection_name)
                        logger.info(task_name)
                        task_run = getattr(milvus_instances_map[tmp_collection_name], task_name)
                        task_run()

                logger.debug("Restart server")
                helm_utils.restart_server(self.service_name, namespace)
                # new connection
                # for name in collection_names:
                #     milvus_instance = MilvusClient(collection_name=name, host=self.host)
                #     milvus_instances_map.update({name: milvus_instance})
                time.sleep(30)
                i = i + 1

        elif run_type == "stability":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            during_time = collection["during_time"]
            operations = collection["operations"]
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            if not milvus_instance.exists_collection():
                logger.error(milvus_instance.show_collections())
                raise Exception("Table name: %s not existed" % collection_name)
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            # start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            start_row_count = milvus_instance.count()
            logger.info(start_row_count)
            vector_type = self.get_vector_type(data_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            real_metric_type = utils.metric_type_trans(metric_type)
            query_vectors = [[random.random() for _ in range(dimension)] for _ in range(10000)]
            if "insert" in operations:
                insert_xb = operations["insert"]["xb"]
            if "delete" in operations:
                delete_xb = operations["delete"]["xb"]
            if "query" in operations:
                g_top_k = int(operations["query"]["top_ks"].split("-")[1])
                l_top_k = int(operations["query"]["top_ks"].split("-")[0])
                g_nq = int(operations["query"]["nqs"].split("-")[1])
                l_nq = int(operations["query"]["nqs"].split("-")[0])
                search_params = operations["query"]["search_params"]
            i = 0
            start_time = time.time()
            while time.time() < start_time + during_time * 60:
                i = i + 1
                q = self.gen_executors(operations)
                for name in q:
                    try:
                        if name == "insert":
                            insert_ids = random.sample(list(range(collection_size)), insert_xb)
                            insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)]
                            entities = milvus_instance.generate_entities(insert_vectors, insert_ids)
                            milvus_instance.insert(entities, ids=insert_ids)
                        elif name == "delete":
                            delete_ids = random.sample(list(range(collection_size)), delete_xb)
                            milvus_instance.delete(delete_ids)
                        elif name == "query":
                            top_k = random.randint(l_top_k, g_top_k)
                            nq = random.randint(l_nq, g_nq)
                            search_param = {}
                            for k, v in search_params.items():
                                search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1]))
                            logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param)))
                            vector_query = {"vector": {vec_field_name: {
                                "topk": top_k,
                                "query": query_vectors[:nq],
                                "metric_type": real_metric_type,
                                "params": search_param}
                            }}
                            result = milvus_instance.query(vector_query)
                        elif name in ["flush", "compact"]:
                            func = getattr(milvus_instance, name)
                            func()
                        logger.debug(milvus_instance.count())
                    except Exception as e:
                        logger.error(name)
                        logger.error(str(e))
                        raise
                logger.debug("Loop time: %d" % i)
            # end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            end_row_count = milvus_instance.count()
            metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info,
                                         {})
            metric.metrics = {
                "type": "stability",
                "value": {
                    "during_time": during_time,
                    "row_count_increments": end_row_count - start_row_count
                }
            }
            report(metric)

        elif run_type == "debug":
            time.sleep(7200)
            default_insert_vectors = [[random.random() for _ in range(128)] for _ in range(500000)]
            interval = 50000
            for loop in range(1, 7):
                insert_xb = loop * interval
                insert_vectors = default_insert_vectors[:insert_xb]
                insert_ids = [i for i in range(insert_xb)]
                entities = milvus_instance.generate_entities(insert_vectors, insert_ids)
                for j in range(5):
                    milvus_instance.insert(entities, ids=insert_ids)
                    time.sleep(10)

        else:
            raise Exception("Run type not defined")
        logger.debug("All test finished")
Ejemplo n.º 5
0
    def run(self, run_type, collection):
        logger.debug(run_type)
        logger.debug(collection)
        collection_name = collection["collection_name"] if "collection_name" in collection else None
        milvus_instance = MilvusClient(collection_name=collection_name, host=self.host, port=self.port)
        logger.info(milvus_instance.show_collections())
        # TODO:
        # self.env_value = milvus_instance.get_server_config()
        # ugly implemention
        # self.env_value = utils.convert_nested(self.env_value)
        # self.env_value.pop("logs")
        # self.env_value.pop("network")
        # logger.info(self.env_value)

        if run_type in ["insert_performance", "insert_flush_performance"]:
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name)
            ni_per = collection["ni_per"]
            build_index = collection["build_index"]
            if milvus_instance.exists_collection():
                milvus_instance.drop()
                time.sleep(10)
            vector_type = self.get_vector_type(data_type)
            other_fields = collection["other_fields"] if "other_fields" in collection else None
            milvus_instance.create_collection(dimension, data_type=vector_type, other_fields=other_fields)
            if build_index is True:
                index_type = collection["index_type"]
                index_param = collection["index_param"]
                index_field_name = utils.get_default_field_name(vector_type)
                milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param)
            res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per)
            milvus_instance.flush()
            logger.debug("Table row counts: %d" % milvus_instance.count())
            if build_index is True:
                logger.debug("Start build index for last file")
                milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param)

        elif run_type == "delete_performance":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name)
            ni_per = collection["ni_per"]
            auto_flush = collection["auto_flush"] if "auto_flush" in collection else True
            if not milvus_instance.exists_collection():
                logger.error(milvus_instance.show_collections())
                logger.error("Table: %s not found" % collection_name)
                return
            length = milvus_instance.count() 
            ids = [i for i in range(length)] 
            loops = int(length / ni_per)
            if auto_flush is False:
                milvus_instance.set_config("storage", "auto_flush_interval", BIG_FLUSH_INTERVAL)
            for i in range(loops):
                delete_ids = ids[i*ni_per: i*ni_per+ni_per]
                logger.debug("Delete %d - %d" % (delete_ids[0], delete_ids[-1]))
                milvus_instance.delete(delete_ids)
                logger.debug("Table row counts: %d" % milvus_instance.count())
            logger.debug("Table row counts: %d" % milvus_instance.count())
            milvus_instance.flush()
            logger.debug("Table row counts: %d" % milvus_instance.count())

        elif run_type == "build_performance":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name)
            index_type = collection["index_type"]
            index_param = collection["index_param"]
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            vector_type = self.get_vector_type(data_type)
            index_field_name = utils.get_default_field_name(vector_type)
            # drop index
            logger.debug("Drop index")
            milvus_instance.drop_index(index_field_name)
            start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            start_time = time.time()
            milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param)
            end_time = time.time()
            logger.debug("Table row counts: %d" % milvus_instance.count())
            end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            logger.debug("Diff memory: %s, current memory usage: %s, build time: %s" % ((end_mem_usage - start_mem_usage), end_mem_usage, round(end_time - start_time, 1)))

        elif run_type == "search_performance":
            (data_type, collection_size,  dimension, metric_type) = parser.collection_parser(collection_name)
            run_count = collection["run_count"]
            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            search_params = collection["search_params"]
            filter_query = []
            filters = collection["filters"] if "filters" in collection else []
            # pdb.set_trace()
            # ranges = collection["range"] if "range" in collection else None
            # terms = collection["term"] if "term" in collection else None
            # if ranges:
            #     filter_query.append(eval(ranges))
            # if terms:
            #     filter_query.append(eval(terms))
            vector_type = self.get_vector_type(data_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            # for debugging
            # time.sleep(3600)
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            vector_type = self.get_vector_type(data_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            logger.info(milvus_instance.count())
            result = milvus_instance.describe_index()
            logger.info(result)
            milvus_instance.preload_collection()
            mem_usage = milvus_instance.get_mem_info()["memory_used"]
            logger.info(mem_usage)
            for search_param in search_params:
                logger.info("Search param: %s" % json.dumps(search_param))
                filter_param = []
                if not filters:
                    filters.append(None)
                for filter in filters:
                    if isinstance(filter, dict) and "range" in filter:
                        filter_query.append(eval(filter["range"]))
                        filter_param.append(filter["range"])
                    if isinstance(filter, dict) and "term" in filter:
                        filter_query.append(eval(filter["term"]))
                        filter_param.append(filter["term"])
                    logger.info("filter param: %s" % json.dumps(filter_param))
                    res = self.do_query(milvus_instance, collection_name, vec_field_name, top_ks, nqs, run_count, search_param, filter_query)
                    headers = ["Nq/Top-k"]
                    headers.extend([str(top_k) for top_k in top_ks])
                    logger.info("Search param: %s" % json.dumps(search_param))
                    utils.print_table(headers, nqs, res)
                    mem_usage = milvus_instance.get_mem_info()["memory_used"]
                    logger.info(mem_usage)

        elif run_type == "locust_search_performance":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name)
            ni_per = collection["ni_per"]
            build_index = collection["build_index"]
            vector_type = self.get_vector_type(data_type)
            index_field_name = utils.get_default_field_name(vector_type)
            # if build_index is True:
            #     index_type = collection["index_type"]
            #     index_param = collection["index_param"]
            # # TODO: debug
            # if milvus_instance.exists_collection():
            #     milvus_instance.drop()
            #     time.sleep(10)
            # other_fields = collection["other_fields"] if "other_fields" in collection else None
            # milvus_instance.create_collection(dimension, data_type=vector_type, other_fields=other_fields)
            # milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param)
            # res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per)
            # milvus_instance.flush()
            # logger.debug("Table row counts: %d" % milvus_instance.count())
            # if build_index is True:
            #     logger.debug("Start build index for last file")
            #     milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param)
            real_metric_type = utils.metric_type_trans(metric_type)
            ### spawn locust requests
            task = collection["task"]
            connection_type = "single"
            connection_num = task["connection_num"]
            if connection_num > 1:
                connection_type = "multi"
            clients_num = task["clients_num"]
            hatch_rate = task["hatch_rate"]
            during_time = utils.timestr_to_int(task["during_time"])
            task_types = task["types"]
            # """
            # task: 
            #     connection_num: 1
            #     clients_num: 100
            #     hatch_rate: 2
            #     during_time: 5m
            #     types:
            #     -
            #         type: query
            #         weight: 1
            #         params:
            #         top_k: 10
            #         nq: 1
            #         # filters:
            #         #   -
            #         #     range:
            #         #       int64:
            #         #         LT: 0
            #         #         GT: 1000000
            #         search_param:
            #             nprobe: 16
            # """
            run_params = {"tasks": {}, "clients_num": clients_num, "spawn_rate": hatch_rate, "during_time": during_time}
            for task_type in task_types:
                run_params["tasks"].update({task_type["type"]: task_type["weight"] if "weight" in task_type else 1})

            #. collect stats
            locust_stats = locust_user.locust_executor(self.host, self.port, collection_name, connection_type=connection_type, run_params=run_params)
            logger.info(locust_stats)

        elif run_type == "search_ids_stability":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name)
            search_params = collection["search_params"]
            during_time = collection["during_time"]
            ids_length = collection["ids_length"]
            ids = collection["ids"]
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            g_top_k = int(collection["top_ks"].split("-")[1])
            l_top_k = int(collection["top_ks"].split("-")[0])
            g_id = int(ids.split("-")[1])
            l_id = int(ids.split("-")[0])
            g_id_length = int(ids_length.split("-")[1])
            l_id_length = int(ids_length.split("-")[0])

            milvus_instance.preload_collection()
            start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            logger.debug(start_mem_usage)
            start_time = time.time()
            while time.time() < start_time + during_time * 60:
                search_param = {}
                top_k = random.randint(l_top_k, g_top_k)
                ids_num = random.randint(l_id_length, g_id_length)
                l_ids = random.randint(l_id, g_id-ids_num)
                # ids_param = [random.randint(l_id_length, g_id_length) for _ in range(ids_num)]
                ids_param = [id for id in range(l_ids, l_ids+ids_num)]
                for k, v in search_params.items():
                    search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1]))
                logger.debug("Query top-k: %d, ids_num: %d, param: %s" % (top_k, ids_num, json.dumps(search_param)))
                result = milvus_instance.query_ids(top_k, ids_param, search_param=search_param)
            end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            metrics = {
                "during_time": during_time,
                "start_mem_usage": start_mem_usage,
                "end_mem_usage": end_mem_usage,
                "diff_mem": end_mem_usage - start_mem_usage,
            }
            logger.info(metrics)

        elif run_type == "search_performance_concurrents":
            data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name)
            hdf5_source_file = collection["source_file"]
            use_single_connection = collection["use_single_connection"]
            concurrents = collection["concurrents"]
            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            search_params = self.generate_combinations(collection["search_params"])
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            logger.info(milvus_instance.count())
            result = milvus_instance.describe_index()
            logger.info(result)
            milvus_instance.preload_collection()
            dataset = utils.get_dataset(hdf5_source_file)
            for concurrent_num in concurrents:
                top_k = top_ks[0] 
                for nq in nqs:
                    mem_usage = milvus_instance.get_mem_info()["memory_used"]
                    logger.info(mem_usage)
                    query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq])) 
                    logger.debug(search_params)
                    for search_param in search_params:
                        logger.info("Search param: %s" % json.dumps(search_param))
                        total_time = 0.0
                        if use_single_connection is True:
                            connections = [MilvusClient(collection_name=collection_name, host=self.host, port=self.port)]
                            with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor:
                                future_results = {executor.submit(
                                    self.do_query_qps, connections[0], query_vectors, top_k, search_param=search_param) : index for index in range(concurrent_num)}
                        else:
                            connections = [MilvusClient(collection_name=collection_name, host=self.hos, port=self.port) for i in range(concurrent_num)]
                            with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor:
                                future_results = {executor.submit(
                                    self.do_query_qps, connections[index], query_vectors, top_k, search_param=search_param) : index for index in range(concurrent_num)}
                        for future in concurrent.futures.as_completed(future_results):
                            total_time = total_time + future.result()
                        qps_value = total_time / concurrent_num 
                        logger.debug("QPS value: %f, total_time: %f, request_nums: %f" % (qps_value, total_time, concurrent_num))
                    mem_usage = milvus_instance.get_mem_info()["memory_used"]
                    logger.info(mem_usage)

        elif run_type == "ann_accuracy":
            hdf5_source_file = collection["source_file"]
            collection_name = collection["collection_name"]
            index_types = collection["index_types"]
            index_params = collection["index_params"]
            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            search_params = collection["search_params"]
            # mapping to search param list
            search_params = self.generate_combinations(search_params)
            # mapping to index param list
            index_params = self.generate_combinations(index_params)
            data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name)
            dataset = utils.get_dataset(hdf5_source_file)
            true_ids = np.array(dataset["neighbors"])
            vector_type = self.get_vector_type_from_metric(metric_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            real_metric_type = utils.metric_type_trans(metric_type)

            # re-create collection
            if milvus_instance.exists_collection(collection_name):
                milvus_instance.drop()
                time.sleep(DELETE_INTERVAL_TIME)
            milvus_instance.create_collection(dimension, data_type=vector_type)
            insert_vectors = self.normalize(metric_type, np.array(dataset["train"]))
            if len(insert_vectors) != dataset["train"].shape[0]:
                raise Exception("Row count of insert vectors: %d is not equal to dataset size: %d" % (len(insert_vectors), dataset["train"].shape[0]))
            logger.debug("The row count of entities to be inserted: %d" % len(insert_vectors))
            # insert batch once
            # milvus_instance.insert(insert_vectors)
            loops = len(insert_vectors) // INSERT_INTERVAL + 1
            for i in range(loops):
                start = i*INSERT_INTERVAL
                end = min((i+1)*INSERT_INTERVAL, len(insert_vectors))
                if start < end:
                    tmp_vectors = insert_vectors[start:end]
                    ids = [i for i in range(start, end)]
                    if not isinstance(tmp_vectors, list):
                        entities = milvus_instance.generate_entities(tmp_vectors.tolist(), ids)
                        res_ids = milvus_instance.insert(entities, ids=ids)
                    else:
                        entities = milvus_instance.generate_entities(tmp_vectors, ids)
                        res_ids = milvus_instance.insert(entities, ids=ids)
                    assert res_ids == ids
            milvus_instance.flush()
            res_count = milvus_instance.count()
            logger.info("Table: %s, row count: %d" % (collection_name, res_count))
            if res_count != len(insert_vectors):
                raise Exception("Table row count is not equal to insert vectors")
            for index_type in index_types:
                for index_param in index_params:
                    logger.debug("Building index with param: %s, metric_type: %s" % (json.dumps(index_param), metric_type))
                    milvus_instance.create_index(vec_field_name, index_type, metric_type, index_param=index_param)
                    logger.info("Start preload collection: %s" % collection_name)
                    milvus_instance.preload_collection()
                    for search_param in search_params:
                        for nq in nqs:
                            query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq]))
                            if not isinstance(query_vectors, list):
                                query_vectors = query_vectors.tolist()
                            for top_k in top_ks:
                                logger.debug("Search nq: %d, top-k: %d, search_param: %s, metric_type: %s" % (nq, top_k, json.dumps(search_param), metric_type))
                                vector_query = {"vector": {vec_field_name: {
                                    "topk": top_k,
                                    "query": query_vectors,
                                    "metric_type": real_metric_type,
                                    "params": search_param}
                                }}
                                result = milvus_instance.query(vector_query)
                                result_ids = milvus_instance.get_ids(result)
                                # pdb.set_trace()
                                acc_value = self.get_recall_value(true_ids[:nq, :top_k].tolist(), result_ids)
                                logger.info("Query ann_accuracy: %s" % acc_value)

        elif run_type == "accuracy":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name)
            search_params = collection["search_params"]
            # mapping to search param list
            search_params = self.generate_combinations(search_params)

            top_ks = collection["top_ks"]
            nqs = collection["nqs"]
            collection_info = {
                "dimension": dimension,
                "metric_type": metric_type,
                "dataset_name": collection_name
            }
            if not milvus_instance.exists_collection():
                logger.error("Table name: %s not existed" % collection_name)
                return
            logger.info(milvus_instance.count())
            index_info = milvus_instance.describe_index()
            logger.info(index_info)
            milvus_instance.preload_collection()
            true_ids_all = self.get_groundtruth_ids(collection_size)
            vector_type = self.get_vector_type(data_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            for search_param in search_params:
                headers = ["Nq/Top-k"]
                res = []
                for nq in nqs:
                    tmp_res = []
                    for top_k in top_ks:
                        search_param_group = {
                            "nq": nq,
                            "topk": top_k,
                            "search_param": search_param,
                            "metric_type": metric_type
                        }
                        logger.info("Query params: %s" % json.dumps(search_param_group))
                        result_ids = self.do_query_ids(milvus_instance, collection_name, vec_field_name, top_k, nq, search_param=search_param)
                        mem_used = milvus_instance.get_mem_info()["memory_used"]
                        acc_value = self.get_recall_value(true_ids_all[:nq, :top_k].tolist(), result_ids)
                        logger.info("Query accuracy: %s" % acc_value)
                        tmp_res.append(acc_value)
                        logger.info("Memory usage: %s" % mem_used)
                    res.append(tmp_res)
                headers.extend([str(top_k) for top_k in top_ks])
                logger.info("Search param: %s" % json.dumps(search_param))
                utils.print_table(headers, nqs, res)

        elif run_type == "stability":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name)
            during_time = collection["during_time"]
            operations = collection["operations"]
            if not milvus_instance.exists_collection():
                logger.error(milvus_instance.show_collections())
                raise Exception("Table name: %s not existed" % collection_name)
            milvus_instance.preload_collection()
            start_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            start_row_count = milvus_instance.count()
            logger.info(start_row_count)
            vector_type = self.get_vector_type(data_type)
            vec_field_name = utils.get_default_field_name(vector_type)
            real_metric_type = utils.metric_type_trans(metric_type)
            query_vectors = [[random.random() for _ in range(dimension)] for _ in range(10000)]
            if "insert" in operations:
                insert_xb = operations["insert"]["xb"]
            if "delete" in operations:
                delete_xb = operations["delete"]["xb"]
            if "query" in operations:
                g_top_k = int(operations["query"]["top_ks"].split("-")[1])
                l_top_k = int(operations["query"]["top_ks"].split("-")[0])
                g_nq = int(operations["query"]["nqs"].split("-")[1])
                l_nq = int(operations["query"]["nqs"].split("-")[0])
                search_params = operations["query"]["search_params"]
            i = 0
            start_time = time.time()
            while time.time() < start_time + during_time * 60:
                i = i + 1
                q = self.gen_executors(operations)
                for name in q:
                    try:
                        if name == "insert":
                            insert_ids = random.sample(list(range(collection_size)), insert_xb)
                            insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)]
                            entities = milvus_instance.generate_entities(insert_vectors, insert_ids)
                            milvus_instance.insert(entities, ids=insert_ids)
                        elif name == "delete":
                            delete_ids = random.sample(list(range(collection_size)), delete_xb)
                            milvus_instance.delete(delete_ids)
                        elif name == "query":
                            top_k = random.randint(l_top_k, g_top_k)
                            nq = random.randint(l_nq, g_nq)
                            search_param = {}
                            for k, v in search_params.items():
                                search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1]))
                            logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param)))
                            vector_query = {"vector": {vec_field_name: {
                                "topk": top_k,
                                "query": query_vectors[:nq],
                                "metric_type": real_metric_type,
                                "params": search_param}
                            }}
                            result = milvus_instance.query(vector_query)
                        elif name in ["flush", "compact"]:
                            func = getattr(milvus_instance, name)
                            func()
                        logger.debug(milvus_instance.count())
                    except Exception as e:
                        logger.error(name)
                        logger.error(str(e))
                        raise
                logger.debug("Loop time: %d" % i)
            end_mem_usage = milvus_instance.get_mem_info()["memory_used"]
            end_row_count = milvus_instance.count()
            metrics = {
                "during_time": during_time,
                "start_mem_usage": start_mem_usage,
                "end_mem_usage": end_mem_usage,
                "diff_mem": end_mem_usage - start_mem_usage,
                "row_count_increments": end_row_count - start_row_count
            }
            logger.info(metrics)

        elif run_type == "loop_stability":
            # init data
            milvus_instance.clean_db()
            pull_interval = collection["pull_interval"]
            collection_num = collection["collection_num"]
            concurrent = collection["concurrent"] if "concurrent" in collection else False
            concurrent_num = collection_num
            dimension = collection["dimension"] if "dimension" in collection else 128
            insert_xb = collection["insert_xb"] if "insert_xb" in collection else 100000
            index_types = collection["index_types"] if "index_types" in collection else ['ivf_sq8']
            index_param = {"nlist": 256}
            collection_names = []
            milvus_instances_map = {}
            insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)]
            ids = [i for i in range(insert_xb)]
            # initialize and prepare
            for i in range(collection_num):
                name = utils.get_unique_name(prefix="collection_%d_" % i)
                collection_names.append(name)
                metric_type = random.choice(["l2", "ip"])
                # default float_vector
                milvus_instance = MilvusClient(collection_name=name, host=self.host)
                milvus_instance.create_collection(dimension, other_fields=None)
                index_type = random.choice(index_types)
                field_name = utils.get_default_field_name()
                milvus_instance.create_index(field_name, index_type, metric_type, index_param=index_param)
                logger.info(milvus_instance.describe_index())
                insert_vectors = utils.normalize(metric_type, insert_vectors)
                entities = milvus_instance.generate_entities(insert_vectors, ids)
                res_ids = milvus_instance.insert(entities, ids=ids)
                milvus_instance.flush()
                milvus_instances_map.update({name: milvus_instance})
                logger.info(milvus_instance.describe_index())

            # loop time unit: min -> s
            pull_interval_seconds = pull_interval * 60
            tasks = ["insert_rand", "delete_rand", "query_rand", "flush", "compact"]
            i = 1
            while True:
                logger.info("Loop time: %d" % i)
                start_time = time.time()
                while time.time() - start_time < pull_interval_seconds:
                    if concurrent:
                        threads = []
                        for name in collection_names:
                            task_name = random.choice(tasks)
                            task_run = getattr(milvus_instances_map[name], task_name)
                            t = threading.Thread(target=task_run, args=())
                            threads.append(t)
                            t.start()
                        for t in threads:
                            t.join()
                        # with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor:
                        #     future_results = {executor.submit(getattr(milvus_instances_map[mp[j][0]], mp[j][1])): j for j in range(concurrent_num)}
                        #     for future in concurrent.futures.as_completed(future_results):
                        #         future.result()
                    else:
                        tmp_collection_name = random.choice(collection_names)
                        task_name = random.choice(tasks)
                        logger.info(tmp_collection_name)
                        logger.info(task_name)
                        task_run = getattr(milvus_instances_map[tmp_collection_name], task_name)
                        task_run()
                # new connection
                # for name in collection_names:
                #     milvus_instance = MilvusClient(collection_name=name, host=self.host)
                #     milvus_instances_map.update({name: milvus_instance})
                i = i + 1

        elif run_type == "locust_mix_performance":
            (data_type, collection_size, dimension, metric_type) = parser.collection_parser(
                collection_name)
            ni_per = collection["ni_per"]
            build_index = collection["build_index"]
            vector_type = self.get_vector_type(data_type)
            index_field_name = utils.get_default_field_name(vector_type)
            # drop exists collection
            if milvus_instance.exists_collection():
                milvus_instance.drop()
                time.sleep(10)
            # create collection
            other_fields = collection["other_fields"] if "other_fields" in collection else None
            milvus_instance.create_collection(dimension, data_type=DataType.FLOAT_VECTOR, collection_name=collection_name, other_fields=other_fields)
            logger.info(milvus_instance.get_info())
            # insert entities
            insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(ni_per)]
            insert_ids = random.sample(list(range(collection_size)), ni_per)
            insert_vectors = utils.normalize(metric_type, insert_vectors)
            entities = milvus_instance.generate_entities(insert_vectors, insert_ids, collection_name)
            milvus_instance.insert(entities, ids=insert_ids)
            # flush
            milvus_instance.flush()
            logger.info(milvus_instance.get_stats())
            logger.debug("Table row counts: %d" % milvus_instance.count())
            # create index
            if build_index is True:
                index_type = collection["index_type"]
                index_param = collection["index_param"]
                logger.debug("Start build index for last file")
                milvus_instance.create_index(index_field_name, index_type, metric_type, index_param)
                logger.debug(milvus_instance.describe_index())
            # locust
            task = collection["tasks"]
            task_file = utils.get_unique_name()
            task_file_script = task_file + '.py'
            task_file_csv = task_file + '_stats.csv'
            task_types = task["types"]
            connection_type = "single"
            connection_num = task["connection_num"]
            if connection_num > 1:
                connection_type = "multi"
            clients_num = task["clients_num"]
            hatch_rate = task["hatch_rate"]
            during_time = task["during_time"]
            def_strs = ""
            # define def str
            for task_type in task_types:
                type = task_type["type"]
                weight = task_type["weight"]
                if type == "flush":
                    def_str = """
    @task(%d)
    def flush(self):
        client = get_client(collection_name)
        client.flush(collection_name=collection_name)
                        """ % weight
                if type == "compact":
                    def_str = """
    @task(%d)
    def compact(self):
        client = get_client(collection_name)
        client.compact(collection_name)
                        """ % weight
                if type == "query":
                    def_str = """
    @task(%d)
    def query(self):
        client = get_client(collection_name)
        params = %s
        X = [[random.random() for i in range(dim)] for i in range(params["nq"])]
        vector_query = {"vector": {"%s": {
        "topk": params["top_k"], 
        "query": X, 
        "metric_type": "%s", 
        "params": params["search_param"]}}}
        client.query(vector_query, filter_query=params["filters"], collection_name=collection_name)
                        """ % (weight, task_type["params"], index_field_name, utils.metric_type_trans(metric_type))
                if type == "insert":
                    def_str = """
    @task(%d)
    def insert(self):
        client = get_client(collection_name)
        params = %s
        insert_ids = random.sample(list(range(100000)), params["nb"])
        insert_vectors = [[random.random() for _ in range(dim)] for _ in range(params["nb"])]
        insert_vectors = utils.normalize("l2", insert_vectors)
        entities = generate_entities(insert_vectors, insert_ids)
        client.insert(entities,ids=insert_ids, collection_name=collection_name)
                    """ % (weight, task_type["params"])
                if type == "delete":
                    def_str = """
    @task(%d)
    def delete(self):
        client = get_client(collection_name)
        ids = [random.randint(1, 1000000) for i in range(1)]
        client.delete(ids, collection_name)
                        """ % weight
                def_strs += def_str
                print(def_strs)
                # define locust code str
                code_str = """
import random
import json
from locust import User, task, between
from locust_task import MilvusTask
from client import MilvusClient
import utils

host = '%s'
port = %s
collection_name = '%s'
dim = %s
connection_type = '%s'
m = MilvusClient(host=host, port=port)


def get_client(collection_name):
    if connection_type == 'single':
        return MilvusTask(m=m)
    elif connection_type == 'multi':
        return MilvusTask(connection_type='multi', host=host, port=port, collection_name=collection_name)
  
        
def generate_entities(vectors, ids):
    return m.generate_entities(vectors, ids, collection_name)


class MixTask(User):
    wait_time = between(0.001, 0.002)
    %s
        """ % (self.host, self.port, collection_name, dimension, connection_type, def_strs)
            with open(task_file_script, "w+") as fd:
                fd.write(code_str)
            locust_cmd = "locust -f %s --headless --csv=%s -u %d -r %d -t %s" % (
                task_file_script,
                task_file,
                clients_num,
                hatch_rate,
                during_time)
            logger.info(locust_cmd)
            try:
                res = os.system(locust_cmd)
            except Exception as e:
                logger.error(str(e))
                return

            # . retrieve and collect test statistics
            metric = None
            with open(task_file_csv, newline='') as fd:
                dr = csv.DictReader(fd)
                for row in dr:
                    if row["Name"] != "Aggregated":
                        continue
                    metric = row
            logger.info(metric)

        else:
            raise Exception("Run type not defined")
        logger.debug("All test finished")