def create_collection(self, dimension, data_type=DataType.FLOAT_VECTOR, auto_id=False, collection_name=None, other_fields=None): self._dimension = dimension if not collection_name: collection_name = self._collection_name vec_field_name = utils.get_default_field_name(data_type) fields = [ {"name": vec_field_name, "type": data_type, "params": {"dim": dimension}}, {"name": "id", "type": DataType.INT64, "is_primary": True} ] if other_fields: other_fields = other_fields.split(",") for other_field_name in other_fields: if other_field_name.startswith("int"): field_type = DataType.INT64 elif other_field_name.startswith("float"): field_type = DataType.FLOAT elif other_field_name.startswith("double"): field_type = DataType.DOUBLE else: raise Exception("Field name not supported") fields.append({"name": other_field_name, "type": field_type}) create_param = { "fields": fields, "auto_id": auto_id} try: self._milvus.create_collection(collection_name, create_param) logger.info("Create collection: <%s> successfully" % collection_name) except Exception as e: logger.error(str(e)) raise
def load_query_rand(self, nq_max=100): # for ivf search dimension = 128 top_k = random.randint(1, 100) nq = random.randint(1, nq_max) nprobe = random.randint(1, 100) search_param = {"nprobe": nprobe} query_vectors = [[random.random() for _ in range(dimension)] for _ in range(nq)] metric_type = random.choice(["l2", "ip"]) logger.info("%s, Search nq: %d, top_k: %d, nprobe: %d" % (self._collection_name, nq, top_k, nprobe)) vec_field_name = utils.get_default_field_name() vector_query = {"vector": {vec_field_name: { "topk": top_k, "query": query_vectors, "metric_type": utils.metric_type_trans(metric_type), "params": search_param} }} self.load_and_query(vector_query)
def create_collection(self, dimension, data_type=DataType.FLOAT_VECTOR, auto_id=False, collection_name=None, other_fields=None): self._dimension = dimension if not collection_name: collection_name = self._collection_name vec_field_name = utils.get_default_field_name(data_type) fields = [{ "name": vec_field_name, "type": data_type, "params": { "dim": dimension } }] if other_fields: other_fields = other_fields.split(",") if "int" in other_fields: fields.append({ "name": utils.DEFAULT_INT_FIELD_NAME, "type": DataType.INT64 }) if "float" in other_fields: fields.append({ "name": utils.DEFAULT_FLOAT_FIELD_NAME, "type": DataType.FLOAT }) create_param = {"fields": fields, "auto_id": auto_id} try: self._milvus.create_collection(collection_name, create_param) logger.info("Create collection: <%s> successfully" % collection_name) except Exception as e: logger.error(str(e)) raise
def run(self, run_type, collection): logger.debug(run_type) logger.debug(collection) collection_name = collection["collection_name"] if "collection_name" in collection else None milvus_instance = MilvusClient(collection_name=collection_name, host=self.host) # TODO: removed # self.env_value = milvus_instance.get_server_config() # ugly implemention # self.env_value = utils.convert_nested(self.env_value) # self.env_value.pop("logs") # self.env_value.pop("network") self.env_value = collection if run_type == "insert_performance": (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) ni_per = collection["ni_per"] build_index = collection["build_index"] if milvus_instance.exists_collection(): milvus_instance.drop() time.sleep(10) index_info = {} search_params = {} vector_type = self.get_vector_type(data_type) other_fields = collection["other_fields"] if "other_fields" in collection else None milvus_instance.create_collection(dimension, data_type=vector_type, other_fields=other_fields) if build_index is True: index_type = collection["index_type"] index_param = collection["index_param"] index_info = { "index_type": index_type, "index_param": index_param } index_field_name = utils.get_default_field_name(vector_type) milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param) logger.debug(milvus_instance.describe_index()) res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per) flush_time = 0.0 if "flush" in collection and collection["flush"] == "no": logger.debug("No manual flush") else: start_time = time.time() milvus_instance.flush() flush_time = time.time() - start_time logger.debug(milvus_instance.count()) collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name, "other_fields": other_fields, "ni_per": ni_per } metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params) total_time = res["total_time"] build_time = 0 if build_index is True: logger.debug("Start build index for last file") start_time = time.time() milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param) build_time = time.time() - start_time total_time = total_time + build_time metric.metrics = { "type": run_type, "value": { "total_time": total_time, "qps": res["qps"], "ni_time": res["ni_time"], "flush_time": flush_time, "build_time": build_time } } report(metric) elif run_type == "build_performance": (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) index_type = collection["index_type"] index_param = collection["index_param"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } index_info = { "index_type": index_type, "index_param": index_param } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return search_params = {} vector_type = self.get_vector_type(data_type) index_field_name = utils.get_default_field_name(vector_type) start_time = time.time() # drop index logger.debug("Drop index") milvus_instance.drop_index(index_field_name) # start_mem_usage = milvus_instance.get_mem_info()["memory_used"] # TODO: need to check milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param) logger.debug(milvus_instance.describe_index()) logger.debug(milvus_instance.count()) end_time = time.time() # end_mem_usage = milvus_instance.get_mem_info()["memory_used"] metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params) metric.metrics = { "type": "build_performance", "value": { "build_time": round(end_time - start_time, 1), } } report(metric) elif run_type == "delete_performance": (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) ni_per = collection["ni_per"] auto_flush = collection["auto_flush"] if "auto_flush" in collection else True search_params = {} collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error(milvus_instance.show_collections()) logger.error("Table name: %s not existed" % collection_name) return length = milvus_instance.count() logger.info(length) index_info = milvus_instance.describe_index() logger.info(index_info) ids = [i for i in range(length)] loops = int(length / ni_per) milvus_instance.load_collection() # TODO: remove # start_mem_usage = milvus_instance.get_mem_info()["memory_used"] start_time = time.time() # if auto_flush is False: # milvus_instance.set_config("storage", "auto_flush_interval", BIG_FLUSH_INTERVAL) for i in range(loops): delete_ids = ids[i * ni_per: i * ni_per + ni_per] logger.debug("Delete %d - %d" % (delete_ids[0], delete_ids[-1])) milvus_instance.delete(delete_ids) logger.debug("Table row counts: %d" % milvus_instance.count()) logger.debug("Table row counts: %d" % milvus_instance.count()) start_flush_time = time.time() milvus_instance.flush() end_flush_time = time.time() end_time = time.time() # end_mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.debug("Table row counts: %d" % milvus_instance.count()) # milvus_instance.set_config("storage", "auto_flush_interval", DEFAULT_FLUSH_INTERVAL) metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params) delete_time = round(end_time - start_time, 1) metric.metrics = { "type": "delete_performance", "value": { "delete_time": delete_time, "qps": round(collection_size / delete_time, 1) } } if auto_flush is False: flush_time = round(end_flush_time - start_flush_time, 1) metric.metrics["value"].update({"flush_time": flush_time}) report(metric) elif run_type == "get_ids_performance": (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) ids_length_per_segment = collection["ids_length_per_segment"] if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } search_params = {} logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) for ids_num in ids_length_per_segment: segment_num, get_ids = milvus_instance.get_rand_ids_each_segment(ids_num) start_time = time.time() get_res = milvus_instance.get_entities(get_ids) total_time = time.time() - start_time avg_time = total_time / segment_num run_params = {"ids_num": ids_num} logger.info( "Segment num: %d, ids num per segment: %d, run_time: %f" % (segment_num, ids_num, total_time)) metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params, run_params=run_params) metric.metrics = { "type": run_type, "value": { "total_time": round(total_time, 1), "avg_time": round(avg_time, 1) } } report(metric) elif run_type == "search_performance": (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) run_count = collection["run_count"] top_ks = collection["top_ks"] nqs = collection["nqs"] # filter_query = collection["filter"] if "filter" in collection else None filters = collection["filters"] if "filters" in collection else [] filter_query = [] search_params = collection["search_params"] fields = self.get_fields(milvus_instance, collection_name) collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name "fields": fields } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return vector_type = self.get_vector_type(data_type) vec_field_name = utils.get_default_field_name(vector_type) logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) milvus_instance.load_collection() logger.info("Start warm up query") res = self.do_query(milvus_instance, collection_name, vec_field_name, [1], [1], 2, search_param=search_params[0], filter_query=filter_query) logger.info("End warm up query") for search_param in search_params: logger.info("Search param: %s" % json.dumps(search_param)) if not filters: filters.append(None) for filter in filters: filter_param = [] if isinstance(filter, dict) and "range" in filter: filter_query.append(eval(filter["range"])) filter_param.append(filter["range"]) if isinstance(filter, dict) and "term" in filter: filter_query.append(eval(filter["term"])) filter_param.append(filter["term"]) logger.info("filter param: %s" % json.dumps(filter_param)) res = self.do_query(milvus_instance, collection_name, vec_field_name, top_ks, nqs, run_count, search_param, filter_query=filter_query) headers = ["Nq/Top-k"] headers.extend([str(top_k) for top_k in top_ks]) logger.info("Search param: %s" % json.dumps(search_param)) utils.print_table(headers, nqs, res) for index_nq, nq in enumerate(nqs): for index_top_k, top_k in enumerate(top_ks): search_param_group = { "nq": nq, "topk": top_k, "search_param": search_param, "filter": filter_param } search_time = res[index_nq][index_top_k] metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_param_group) metric.metrics = { "type": "search_performance", "value": { "search_time": search_time } } report(metric) elif run_type == "locust_insert_stress": pass elif run_type in ["locust_search_performance", "locust_insert_performance", "locust_mix_performance"]: (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) ni_per = collection["ni_per"] build_index = collection["build_index"] if milvus_instance.exists_collection(): milvus_instance.drop() time.sleep(10) index_info = {} search_params = {} vector_type = self.get_vector_type(data_type) index_field_name = utils.get_default_field_name(vector_type) milvus_instance.create_collection(dimension, data_type=vector_type, other_fields=None) vector_type = self.get_vector_type(data_type) vec_field_name = utils.get_default_field_name(vector_type) if build_index is True: index_type = collection["index_type"] index_param = collection["index_param"] index_info = { "index_type": index_type, "index_param": index_param } milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param) logger.debug(milvus_instance.describe_index()) if run_type in ["locust_search_performance", "locust_mix_performance"]: res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per) if "flush" in collection and collection["flush"] == "no": logger.debug("No manual flush") else: milvus_instance.flush() if build_index is True: logger.debug("Start build index for last file") milvus_instance.create_index(index_field_name, index_type, metric_type, _async=True, index_param=index_param) logger.debug(milvus_instance.describe_index()) logger.debug("Table row counts: %d" % milvus_instance.count()) milvus_instance.load_collection() logger.info("Start warm up query") for i in range(2): res = self.do_query(milvus_instance, collection_name, vec_field_name, [1], [1], 2, search_param={"nprobe": 16}) logger.info("End warm up query") real_metric_type = utils.metric_type_trans(metric_type) ### spawn locust requests task = collection["task"] connection_type = "single" connection_num = task["connection_num"] if connection_num > 1: connection_type = "multi" clients_num = task["clients_num"] hatch_rate = task["hatch_rate"] during_time = utils.timestr_to_int(task["during_time"]) task_types = task["types"] run_params = {"tasks": {}, "clients_num": clients_num, "spawn_rate": hatch_rate, "during_time": during_time} for task_type in task_types: run_params["tasks"].update({task_type["type"]: task_type["weight"] if "weight" in task_type else 1}) # . collect stats locust_stats = locust_user.locust_executor(self.host, self.port, collection_name, connection_type=connection_type, run_params=run_params) logger.info(locust_stats) collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params) metric.metrics = { "type": run_type, "value": locust_stats} report(metric) elif run_type == "search_ids_stability": (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) search_params = collection["search_params"] during_time = collection["during_time"] ids_length = collection["ids_length"] ids = collection["ids"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) g_top_k = int(collection["top_ks"].split("-")[1]) l_top_k = int(collection["top_ks"].split("-")[0]) g_id = int(ids.split("-")[1]) l_id = int(ids.split("-")[0]) g_id_length = int(ids_length.split("-")[1]) l_id_length = int(ids_length.split("-")[0]) milvus_instance.load_collection() # start_mem_usage = milvus_instance.get_mem_info()["memory_used"] # logger.debug(start_mem_usage) start_time = time.time() while time.time() < start_time + during_time * 60: search_param = {} top_k = random.randint(l_top_k, g_top_k) ids_num = random.randint(l_id_length, g_id_length) ids_param = [random.randint(l_id_length, g_id_length) for _ in range(ids_num)] for k, v in search_params.items(): search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) logger.debug("Query top-k: %d, ids_num: %d, param: %s" % (top_k, ids_num, json.dumps(search_param))) result = milvus_instance.query_ids(top_k, ids_param, search_param=search_param) # end_mem_usage = milvus_instance.get_mem_info()["memory_used"] metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, {}) metric.metrics = { "type": "search_ids_stability", "value": { "during_time": during_time, } } report(metric) # for sift/deep datasets # TODO: enable elif run_type == "accuracy": (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) search_params = collection["search_params"] # mapping to search param list search_params = self.generate_combinations(search_params) top_ks = collection["top_ks"] nqs = collection["nqs"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) milvus_instance.load_collection() true_ids_all = self.get_groundtruth_ids(collection_size) vector_type = self.get_vector_type(data_type) vec_field_name = utils.get_default_field_name(vector_type) for search_param in search_params: headers = ["Nq/Top-k"] res = [] for nq in nqs: for top_k in top_ks: tmp_res = [] search_param_group = { "nq": nq, "topk": top_k, "search_param": search_param, "metric_type": metric_type } logger.info("Query params: %s" % json.dumps(search_param_group)) result_ids = self.do_query_ids(milvus_instance, collection_name, vec_field_name, top_k, nq, search_param=search_param) # mem_used = milvus_instance.get_mem_info()["memory_used"] acc_value = self.get_recall_value(true_ids_all[:nq, :top_k].tolist(), result_ids) logger.info("Query accuracy: %s" % acc_value) tmp_res.append(acc_value) # logger.info("Memory usage: %s" % mem_used) metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_param_group) metric.metrics = { "type": "accuracy", "value": { "acc": acc_value } } report(metric) # logger.info("Memory usage: %s" % mem_used) res.append(tmp_res) headers.extend([str(top_k) for top_k in top_ks]) logger.info("Search param: %s" % json.dumps(search_param)) utils.print_table(headers, nqs, res) elif run_type == "ann_accuracy": hdf5_source_file = collection["source_file"] collection_name = collection["collection_name"] index_types = collection["index_types"] index_params = collection["index_params"] top_ks = collection["top_ks"] nqs = collection["nqs"] search_params = collection["search_params"] # mapping to search param list search_params = self.generate_combinations(search_params) # mapping to index param list index_params = self.generate_combinations(index_params) data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name) collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } dataset = utils.get_dataset(hdf5_source_file) if milvus_instance.exists_collection(collection_name): logger.info("Re-create collection: %s" % collection_name) milvus_instance.drop() time.sleep(DELETE_INTERVAL_TIME) true_ids = np.array(dataset["neighbors"]) vector_type = self.get_vector_type_from_metric(metric_type) vec_field_name = utils.get_default_field_name(vector_type) real_metric_type = utils.metric_type_trans(metric_type) # re-create collection if milvus_instance.exists_collection(collection_name): milvus_instance.drop() time.sleep(DELETE_INTERVAL_TIME) milvus_instance.create_collection(dimension, data_type=vector_type) insert_vectors = self.normalize(metric_type, np.array(dataset["train"])) if len(insert_vectors) != dataset["train"].shape[0]: raise Exception("Row count of insert vectors: %d is not equal to dataset size: %d" % ( len(insert_vectors), dataset["train"].shape[0])) logger.debug("The row count of entities to be inserted: %d" % len(insert_vectors)) # Insert batch once # milvus_instance.insert(insert_vectors) loops = len(insert_vectors) // INSERT_INTERVAL + 1 for i in range(loops): start = i * INSERT_INTERVAL end = min((i + 1) * INSERT_INTERVAL, len(insert_vectors)) if start < end: tmp_vectors = insert_vectors[start:end] ids = [i for i in range(start, end)] if not isinstance(tmp_vectors, list): entities = milvus_instance.generate_entities(tmp_vectors.tolist(), ids) res_ids = milvus_instance.insert(entities, ids=ids) else: entities = milvus_instance.generate_entities(tmp_vectors, ids) res_ids = milvus_instance.insert(entities, ids=ids) assert res_ids == ids milvus_instance.flush() res_count = milvus_instance.count() logger.info("Table: %s, row count: %d" % (collection_name, res_count)) if res_count != len(insert_vectors): raise Exception("Table row count is not equal to insert vectors") for index_type in index_types: for index_param in index_params: logger.debug("Building index with param: %s" % json.dumps(index_param)) if milvus_instance.get_config("cluster.enable") == "true": milvus_instance.create_index(vec_field_name, index_type, metric_type, _async=True, index_param=index_param) else: milvus_instance.create_index(vec_field_name, index_type, metric_type, index_param=index_param) logger.info(milvus_instance.describe_index()) logger.info("Start load collection: %s" % collection_name) milvus_instance.load_collection() logger.info("End load collection: %s" % collection_name) index_info = { "index_type": index_type, "index_param": index_param } logger.debug(index_info) warm_up = True for search_param in search_params: for nq in nqs: query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq])) if not isinstance(query_vectors, list): query_vectors = query_vectors.tolist() for top_k in top_ks: search_param_group = { "nq": len(query_vectors), "topk": top_k, "search_param": search_param, "metric_type": metric_type } logger.debug(search_param_group) vector_query = {"vector": {vec_field_name: { "topk": top_k, "query": query_vectors, "metric_type": real_metric_type, "params": search_param} }} for i in range(2): result = milvus_instance.query(vector_query) warm_up = False logger.info("End warm up") result = milvus_instance.query(vector_query) result_ids = milvus_instance.get_ids(result) acc_value = self.get_recall_value(true_ids[:nq, :top_k].tolist(), result_ids) logger.info("Query ann_accuracy: %s" % acc_value) metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_param_group) metric.metrics = { "type": "ann_accuracy", "value": { "acc": acc_value } } report(metric) elif run_type == "search_stability": (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) search_params = collection["search_params"] during_time = collection["during_time"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) g_top_k = int(collection["top_ks"].split("-")[1]) g_nq = int(collection["nqs"].split("-")[1]) l_top_k = int(collection["top_ks"].split("-")[0]) l_nq = int(collection["nqs"].split("-")[0]) milvus_instance.load_collection() # start_mem_usage = milvus_instance.get_mem_info()["memory_used"] # logger.debug(start_mem_usage) start_row_count = milvus_instance.count() logger.debug(milvus_instance.describe_index()) logger.info(start_row_count) vector_type = self.get_vector_type(data_type) vec_field_name = utils.get_default_field_name(vector_type) real_metric_type = utils.metric_type_trans(metric_type) start_time = time.time() while time.time() < start_time + during_time * 60: search_param = {} top_k = random.randint(l_top_k, g_top_k) nq = random.randint(l_nq, g_nq) for k, v in search_params.items(): search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) query_vectors = [[random.random() for _ in range(dimension)] for _ in range(nq)] logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param))) vector_query = {"vector": {vec_field_name: { "topk": top_k, "query": query_vectors[:nq], "metric_type": real_metric_type, "params": search_param} }} milvus_instance.query(vector_query) # end_mem_usage = milvus_instance.get_mem_info()["memory_used"] metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, {}) metric.metrics = { "type": "search_stability", "value": { "during_time": during_time, } } report(metric) elif run_type == "loop_stability": # init data milvus_instance.clean_db() pull_interval = collection["pull_interval"] collection_num = collection["collection_num"] concurrent = collection["concurrent"] if "concurrent" in collection else False concurrent_num = collection_num dimension = collection["dimension"] if "dimension" in collection else 128 insert_xb = collection["insert_xb"] if "insert_xb" in collection else 100000 index_types = collection["index_types"] if "index_types" in collection else ['ivf_sq8'] index_param = {"nlist": 256} collection_names = [] milvus_instances_map = {} insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)] ids = [i for i in range(insert_xb)] # initialize and prepare for i in range(collection_num): name = utils.get_unique_name(prefix="collection_%d_" % i) collection_names.append(name) metric_type = random.choice(["l2", "ip"]) # default float_vector milvus_instance = MilvusClient(collection_name=name, host=self.host) milvus_instance.create_collection(dimension, other_fields=None) index_type = random.choice(index_types) field_name = utils.get_default_field_name() milvus_instance.create_index(field_name, index_type, metric_type, index_param=index_param) logger.info(milvus_instance.describe_index()) insert_vectors = utils.normalize(metric_type, insert_vectors) entities = milvus_instance.generate_entities(insert_vectors, ids) res_ids = milvus_instance.insert(entities, ids=ids) milvus_instance.flush() milvus_instances_map.update({name: milvus_instance}) logger.info(milvus_instance.describe_index()) # loop time unit: min -> s pull_interval_seconds = pull_interval * 60 tasks = ["insert_rand", "query_rand", "flush"] i = 1 while True: logger.info("Loop time: %d" % i) start_time = time.time() while time.time() - start_time < pull_interval_seconds: if concurrent: threads = [] for name in collection_names: task_name = random.choice(tasks) task_run = getattr(milvus_instances_map[name], task_name) t = threading.Thread(target=task_run, args=()) threads.append(t) t.start() for t in threads: t.join() # with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor: # future_results = {executor.submit(getattr(milvus_instances_map[mp[j][0]], mp[j][1])): j for j in range(concurrent_num)} # for future in concurrent.futures.as_completed(future_results): # future.result() else: tmp_collection_name = random.choice(collection_names) task_name = random.choice(tasks) logger.info(tmp_collection_name) logger.info(task_name) task_run = getattr(milvus_instances_map[tmp_collection_name], task_name) task_run() logger.debug("Restart server") helm_utils.restart_server(self.service_name, namespace) # new connection # for name in collection_names: # milvus_instance = MilvusClient(collection_name=name, host=self.host) # milvus_instances_map.update({name: milvus_instance}) time.sleep(30) i = i + 1 elif run_type == "stability": (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) during_time = collection["during_time"] operations = collection["operations"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error(milvus_instance.show_collections()) raise Exception("Table name: %s not existed" % collection_name) logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) # start_mem_usage = milvus_instance.get_mem_info()["memory_used"] start_row_count = milvus_instance.count() logger.info(start_row_count) vector_type = self.get_vector_type(data_type) vec_field_name = utils.get_default_field_name(vector_type) real_metric_type = utils.metric_type_trans(metric_type) query_vectors = [[random.random() for _ in range(dimension)] for _ in range(10000)] if "insert" in operations: insert_xb = operations["insert"]["xb"] if "delete" in operations: delete_xb = operations["delete"]["xb"] if "query" in operations: g_top_k = int(operations["query"]["top_ks"].split("-")[1]) l_top_k = int(operations["query"]["top_ks"].split("-")[0]) g_nq = int(operations["query"]["nqs"].split("-")[1]) l_nq = int(operations["query"]["nqs"].split("-")[0]) search_params = operations["query"]["search_params"] i = 0 start_time = time.time() while time.time() < start_time + during_time * 60: i = i + 1 q = self.gen_executors(operations) for name in q: try: if name == "insert": insert_ids = random.sample(list(range(collection_size)), insert_xb) insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)] entities = milvus_instance.generate_entities(insert_vectors, insert_ids) milvus_instance.insert(entities, ids=insert_ids) elif name == "delete": delete_ids = random.sample(list(range(collection_size)), delete_xb) milvus_instance.delete(delete_ids) elif name == "query": top_k = random.randint(l_top_k, g_top_k) nq = random.randint(l_nq, g_nq) search_param = {} for k, v in search_params.items(): search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param))) vector_query = {"vector": {vec_field_name: { "topk": top_k, "query": query_vectors[:nq], "metric_type": real_metric_type, "params": search_param} }} result = milvus_instance.query(vector_query) elif name in ["flush", "compact"]: func = getattr(milvus_instance, name) func() logger.debug(milvus_instance.count()) except Exception as e: logger.error(name) logger.error(str(e)) raise logger.debug("Loop time: %d" % i) # end_mem_usage = milvus_instance.get_mem_info()["memory_used"] end_row_count = milvus_instance.count() metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, {}) metric.metrics = { "type": "stability", "value": { "during_time": during_time, "row_count_increments": end_row_count - start_row_count } } report(metric) elif run_type == "debug": time.sleep(7200) default_insert_vectors = [[random.random() for _ in range(128)] for _ in range(500000)] interval = 50000 for loop in range(1, 7): insert_xb = loop * interval insert_vectors = default_insert_vectors[:insert_xb] insert_ids = [i for i in range(insert_xb)] entities = milvus_instance.generate_entities(insert_vectors, insert_ids) for j in range(5): milvus_instance.insert(entities, ids=insert_ids) time.sleep(10) else: raise Exception("Run type not defined") logger.debug("All test finished")
def run(self, run_type, collection): logger.debug(run_type) logger.debug(collection) collection_name = collection["collection_name"] if "collection_name" in collection else None milvus_instance = MilvusClient(collection_name=collection_name, host=self.host, port=self.port) logger.info(milvus_instance.show_collections()) # TODO: # self.env_value = milvus_instance.get_server_config() # ugly implemention # self.env_value = utils.convert_nested(self.env_value) # self.env_value.pop("logs") # self.env_value.pop("network") # logger.info(self.env_value) if run_type in ["insert_performance", "insert_flush_performance"]: (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name) ni_per = collection["ni_per"] build_index = collection["build_index"] if milvus_instance.exists_collection(): milvus_instance.drop() time.sleep(10) vector_type = self.get_vector_type(data_type) other_fields = collection["other_fields"] if "other_fields" in collection else None milvus_instance.create_collection(dimension, data_type=vector_type, other_fields=other_fields) if build_index is True: index_type = collection["index_type"] index_param = collection["index_param"] index_field_name = utils.get_default_field_name(vector_type) milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param) res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per) milvus_instance.flush() logger.debug("Table row counts: %d" % milvus_instance.count()) if build_index is True: logger.debug("Start build index for last file") milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param) elif run_type == "delete_performance": (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name) ni_per = collection["ni_per"] auto_flush = collection["auto_flush"] if "auto_flush" in collection else True if not milvus_instance.exists_collection(): logger.error(milvus_instance.show_collections()) logger.error("Table: %s not found" % collection_name) return length = milvus_instance.count() ids = [i for i in range(length)] loops = int(length / ni_per) if auto_flush is False: milvus_instance.set_config("storage", "auto_flush_interval", BIG_FLUSH_INTERVAL) for i in range(loops): delete_ids = ids[i*ni_per: i*ni_per+ni_per] logger.debug("Delete %d - %d" % (delete_ids[0], delete_ids[-1])) milvus_instance.delete(delete_ids) logger.debug("Table row counts: %d" % milvus_instance.count()) logger.debug("Table row counts: %d" % milvus_instance.count()) milvus_instance.flush() logger.debug("Table row counts: %d" % milvus_instance.count()) elif run_type == "build_performance": (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name) index_type = collection["index_type"] index_param = collection["index_param"] if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return vector_type = self.get_vector_type(data_type) index_field_name = utils.get_default_field_name(vector_type) # drop index logger.debug("Drop index") milvus_instance.drop_index(index_field_name) start_mem_usage = milvus_instance.get_mem_info()["memory_used"] start_time = time.time() milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param) end_time = time.time() logger.debug("Table row counts: %d" % milvus_instance.count()) end_mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.debug("Diff memory: %s, current memory usage: %s, build time: %s" % ((end_mem_usage - start_mem_usage), end_mem_usage, round(end_time - start_time, 1))) elif run_type == "search_performance": (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name) run_count = collection["run_count"] top_ks = collection["top_ks"] nqs = collection["nqs"] search_params = collection["search_params"] filter_query = [] filters = collection["filters"] if "filters" in collection else [] # pdb.set_trace() # ranges = collection["range"] if "range" in collection else None # terms = collection["term"] if "term" in collection else None # if ranges: # filter_query.append(eval(ranges)) # if terms: # filter_query.append(eval(terms)) vector_type = self.get_vector_type(data_type) vec_field_name = utils.get_default_field_name(vector_type) # for debugging # time.sleep(3600) if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return vector_type = self.get_vector_type(data_type) vec_field_name = utils.get_default_field_name(vector_type) logger.info(milvus_instance.count()) result = milvus_instance.describe_index() logger.info(result) milvus_instance.preload_collection() mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.info(mem_usage) for search_param in search_params: logger.info("Search param: %s" % json.dumps(search_param)) filter_param = [] if not filters: filters.append(None) for filter in filters: if isinstance(filter, dict) and "range" in filter: filter_query.append(eval(filter["range"])) filter_param.append(filter["range"]) if isinstance(filter, dict) and "term" in filter: filter_query.append(eval(filter["term"])) filter_param.append(filter["term"]) logger.info("filter param: %s" % json.dumps(filter_param)) res = self.do_query(milvus_instance, collection_name, vec_field_name, top_ks, nqs, run_count, search_param, filter_query) headers = ["Nq/Top-k"] headers.extend([str(top_k) for top_k in top_ks]) logger.info("Search param: %s" % json.dumps(search_param)) utils.print_table(headers, nqs, res) mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.info(mem_usage) elif run_type == "locust_search_performance": (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name) ni_per = collection["ni_per"] build_index = collection["build_index"] vector_type = self.get_vector_type(data_type) index_field_name = utils.get_default_field_name(vector_type) # if build_index is True: # index_type = collection["index_type"] # index_param = collection["index_param"] # # TODO: debug # if milvus_instance.exists_collection(): # milvus_instance.drop() # time.sleep(10) # other_fields = collection["other_fields"] if "other_fields" in collection else None # milvus_instance.create_collection(dimension, data_type=vector_type, other_fields=other_fields) # milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param) # res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per) # milvus_instance.flush() # logger.debug("Table row counts: %d" % milvus_instance.count()) # if build_index is True: # logger.debug("Start build index for last file") # milvus_instance.create_index(index_field_name, index_type, metric_type, index_param=index_param) real_metric_type = utils.metric_type_trans(metric_type) ### spawn locust requests task = collection["task"] connection_type = "single" connection_num = task["connection_num"] if connection_num > 1: connection_type = "multi" clients_num = task["clients_num"] hatch_rate = task["hatch_rate"] during_time = utils.timestr_to_int(task["during_time"]) task_types = task["types"] # """ # task: # connection_num: 1 # clients_num: 100 # hatch_rate: 2 # during_time: 5m # types: # - # type: query # weight: 1 # params: # top_k: 10 # nq: 1 # # filters: # # - # # range: # # int64: # # LT: 0 # # GT: 1000000 # search_param: # nprobe: 16 # """ run_params = {"tasks": {}, "clients_num": clients_num, "spawn_rate": hatch_rate, "during_time": during_time} for task_type in task_types: run_params["tasks"].update({task_type["type"]: task_type["weight"] if "weight" in task_type else 1}) #. collect stats locust_stats = locust_user.locust_executor(self.host, self.port, collection_name, connection_type=connection_type, run_params=run_params) logger.info(locust_stats) elif run_type == "search_ids_stability": (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name) search_params = collection["search_params"] during_time = collection["during_time"] ids_length = collection["ids_length"] ids = collection["ids"] logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) g_top_k = int(collection["top_ks"].split("-")[1]) l_top_k = int(collection["top_ks"].split("-")[0]) g_id = int(ids.split("-")[1]) l_id = int(ids.split("-")[0]) g_id_length = int(ids_length.split("-")[1]) l_id_length = int(ids_length.split("-")[0]) milvus_instance.preload_collection() start_mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.debug(start_mem_usage) start_time = time.time() while time.time() < start_time + during_time * 60: search_param = {} top_k = random.randint(l_top_k, g_top_k) ids_num = random.randint(l_id_length, g_id_length) l_ids = random.randint(l_id, g_id-ids_num) # ids_param = [random.randint(l_id_length, g_id_length) for _ in range(ids_num)] ids_param = [id for id in range(l_ids, l_ids+ids_num)] for k, v in search_params.items(): search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) logger.debug("Query top-k: %d, ids_num: %d, param: %s" % (top_k, ids_num, json.dumps(search_param))) result = milvus_instance.query_ids(top_k, ids_param, search_param=search_param) end_mem_usage = milvus_instance.get_mem_info()["memory_used"] metrics = { "during_time": during_time, "start_mem_usage": start_mem_usage, "end_mem_usage": end_mem_usage, "diff_mem": end_mem_usage - start_mem_usage, } logger.info(metrics) elif run_type == "search_performance_concurrents": data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name) hdf5_source_file = collection["source_file"] use_single_connection = collection["use_single_connection"] concurrents = collection["concurrents"] top_ks = collection["top_ks"] nqs = collection["nqs"] search_params = self.generate_combinations(collection["search_params"]) if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) result = milvus_instance.describe_index() logger.info(result) milvus_instance.preload_collection() dataset = utils.get_dataset(hdf5_source_file) for concurrent_num in concurrents: top_k = top_ks[0] for nq in nqs: mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.info(mem_usage) query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq])) logger.debug(search_params) for search_param in search_params: logger.info("Search param: %s" % json.dumps(search_param)) total_time = 0.0 if use_single_connection is True: connections = [MilvusClient(collection_name=collection_name, host=self.host, port=self.port)] with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor: future_results = {executor.submit( self.do_query_qps, connections[0], query_vectors, top_k, search_param=search_param) : index for index in range(concurrent_num)} else: connections = [MilvusClient(collection_name=collection_name, host=self.hos, port=self.port) for i in range(concurrent_num)] with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor: future_results = {executor.submit( self.do_query_qps, connections[index], query_vectors, top_k, search_param=search_param) : index for index in range(concurrent_num)} for future in concurrent.futures.as_completed(future_results): total_time = total_time + future.result() qps_value = total_time / concurrent_num logger.debug("QPS value: %f, total_time: %f, request_nums: %f" % (qps_value, total_time, concurrent_num)) mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.info(mem_usage) elif run_type == "ann_accuracy": hdf5_source_file = collection["source_file"] collection_name = collection["collection_name"] index_types = collection["index_types"] index_params = collection["index_params"] top_ks = collection["top_ks"] nqs = collection["nqs"] search_params = collection["search_params"] # mapping to search param list search_params = self.generate_combinations(search_params) # mapping to index param list index_params = self.generate_combinations(index_params) data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name) dataset = utils.get_dataset(hdf5_source_file) true_ids = np.array(dataset["neighbors"]) vector_type = self.get_vector_type_from_metric(metric_type) vec_field_name = utils.get_default_field_name(vector_type) real_metric_type = utils.metric_type_trans(metric_type) # re-create collection if milvus_instance.exists_collection(collection_name): milvus_instance.drop() time.sleep(DELETE_INTERVAL_TIME) milvus_instance.create_collection(dimension, data_type=vector_type) insert_vectors = self.normalize(metric_type, np.array(dataset["train"])) if len(insert_vectors) != dataset["train"].shape[0]: raise Exception("Row count of insert vectors: %d is not equal to dataset size: %d" % (len(insert_vectors), dataset["train"].shape[0])) logger.debug("The row count of entities to be inserted: %d" % len(insert_vectors)) # insert batch once # milvus_instance.insert(insert_vectors) loops = len(insert_vectors) // INSERT_INTERVAL + 1 for i in range(loops): start = i*INSERT_INTERVAL end = min((i+1)*INSERT_INTERVAL, len(insert_vectors)) if start < end: tmp_vectors = insert_vectors[start:end] ids = [i for i in range(start, end)] if not isinstance(tmp_vectors, list): entities = milvus_instance.generate_entities(tmp_vectors.tolist(), ids) res_ids = milvus_instance.insert(entities, ids=ids) else: entities = milvus_instance.generate_entities(tmp_vectors, ids) res_ids = milvus_instance.insert(entities, ids=ids) assert res_ids == ids milvus_instance.flush() res_count = milvus_instance.count() logger.info("Table: %s, row count: %d" % (collection_name, res_count)) if res_count != len(insert_vectors): raise Exception("Table row count is not equal to insert vectors") for index_type in index_types: for index_param in index_params: logger.debug("Building index with param: %s, metric_type: %s" % (json.dumps(index_param), metric_type)) milvus_instance.create_index(vec_field_name, index_type, metric_type, index_param=index_param) logger.info("Start preload collection: %s" % collection_name) milvus_instance.preload_collection() for search_param in search_params: for nq in nqs: query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq])) if not isinstance(query_vectors, list): query_vectors = query_vectors.tolist() for top_k in top_ks: logger.debug("Search nq: %d, top-k: %d, search_param: %s, metric_type: %s" % (nq, top_k, json.dumps(search_param), metric_type)) vector_query = {"vector": {vec_field_name: { "topk": top_k, "query": query_vectors, "metric_type": real_metric_type, "params": search_param} }} result = milvus_instance.query(vector_query) result_ids = milvus_instance.get_ids(result) # pdb.set_trace() acc_value = self.get_recall_value(true_ids[:nq, :top_k].tolist(), result_ids) logger.info("Query ann_accuracy: %s" % acc_value) elif run_type == "accuracy": (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name) search_params = collection["search_params"] # mapping to search param list search_params = self.generate_combinations(search_params) top_ks = collection["top_ks"] nqs = collection["nqs"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) milvus_instance.preload_collection() true_ids_all = self.get_groundtruth_ids(collection_size) vector_type = self.get_vector_type(data_type) vec_field_name = utils.get_default_field_name(vector_type) for search_param in search_params: headers = ["Nq/Top-k"] res = [] for nq in nqs: tmp_res = [] for top_k in top_ks: search_param_group = { "nq": nq, "topk": top_k, "search_param": search_param, "metric_type": metric_type } logger.info("Query params: %s" % json.dumps(search_param_group)) result_ids = self.do_query_ids(milvus_instance, collection_name, vec_field_name, top_k, nq, search_param=search_param) mem_used = milvus_instance.get_mem_info()["memory_used"] acc_value = self.get_recall_value(true_ids_all[:nq, :top_k].tolist(), result_ids) logger.info("Query accuracy: %s" % acc_value) tmp_res.append(acc_value) logger.info("Memory usage: %s" % mem_used) res.append(tmp_res) headers.extend([str(top_k) for top_k in top_ks]) logger.info("Search param: %s" % json.dumps(search_param)) utils.print_table(headers, nqs, res) elif run_type == "stability": (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name) during_time = collection["during_time"] operations = collection["operations"] if not milvus_instance.exists_collection(): logger.error(milvus_instance.show_collections()) raise Exception("Table name: %s not existed" % collection_name) milvus_instance.preload_collection() start_mem_usage = milvus_instance.get_mem_info()["memory_used"] start_row_count = milvus_instance.count() logger.info(start_row_count) vector_type = self.get_vector_type(data_type) vec_field_name = utils.get_default_field_name(vector_type) real_metric_type = utils.metric_type_trans(metric_type) query_vectors = [[random.random() for _ in range(dimension)] for _ in range(10000)] if "insert" in operations: insert_xb = operations["insert"]["xb"] if "delete" in operations: delete_xb = operations["delete"]["xb"] if "query" in operations: g_top_k = int(operations["query"]["top_ks"].split("-")[1]) l_top_k = int(operations["query"]["top_ks"].split("-")[0]) g_nq = int(operations["query"]["nqs"].split("-")[1]) l_nq = int(operations["query"]["nqs"].split("-")[0]) search_params = operations["query"]["search_params"] i = 0 start_time = time.time() while time.time() < start_time + during_time * 60: i = i + 1 q = self.gen_executors(operations) for name in q: try: if name == "insert": insert_ids = random.sample(list(range(collection_size)), insert_xb) insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)] entities = milvus_instance.generate_entities(insert_vectors, insert_ids) milvus_instance.insert(entities, ids=insert_ids) elif name == "delete": delete_ids = random.sample(list(range(collection_size)), delete_xb) milvus_instance.delete(delete_ids) elif name == "query": top_k = random.randint(l_top_k, g_top_k) nq = random.randint(l_nq, g_nq) search_param = {} for k, v in search_params.items(): search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param))) vector_query = {"vector": {vec_field_name: { "topk": top_k, "query": query_vectors[:nq], "metric_type": real_metric_type, "params": search_param} }} result = milvus_instance.query(vector_query) elif name in ["flush", "compact"]: func = getattr(milvus_instance, name) func() logger.debug(milvus_instance.count()) except Exception as e: logger.error(name) logger.error(str(e)) raise logger.debug("Loop time: %d" % i) end_mem_usage = milvus_instance.get_mem_info()["memory_used"] end_row_count = milvus_instance.count() metrics = { "during_time": during_time, "start_mem_usage": start_mem_usage, "end_mem_usage": end_mem_usage, "diff_mem": end_mem_usage - start_mem_usage, "row_count_increments": end_row_count - start_row_count } logger.info(metrics) elif run_type == "loop_stability": # init data milvus_instance.clean_db() pull_interval = collection["pull_interval"] collection_num = collection["collection_num"] concurrent = collection["concurrent"] if "concurrent" in collection else False concurrent_num = collection_num dimension = collection["dimension"] if "dimension" in collection else 128 insert_xb = collection["insert_xb"] if "insert_xb" in collection else 100000 index_types = collection["index_types"] if "index_types" in collection else ['ivf_sq8'] index_param = {"nlist": 256} collection_names = [] milvus_instances_map = {} insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)] ids = [i for i in range(insert_xb)] # initialize and prepare for i in range(collection_num): name = utils.get_unique_name(prefix="collection_%d_" % i) collection_names.append(name) metric_type = random.choice(["l2", "ip"]) # default float_vector milvus_instance = MilvusClient(collection_name=name, host=self.host) milvus_instance.create_collection(dimension, other_fields=None) index_type = random.choice(index_types) field_name = utils.get_default_field_name() milvus_instance.create_index(field_name, index_type, metric_type, index_param=index_param) logger.info(milvus_instance.describe_index()) insert_vectors = utils.normalize(metric_type, insert_vectors) entities = milvus_instance.generate_entities(insert_vectors, ids) res_ids = milvus_instance.insert(entities, ids=ids) milvus_instance.flush() milvus_instances_map.update({name: milvus_instance}) logger.info(milvus_instance.describe_index()) # loop time unit: min -> s pull_interval_seconds = pull_interval * 60 tasks = ["insert_rand", "delete_rand", "query_rand", "flush", "compact"] i = 1 while True: logger.info("Loop time: %d" % i) start_time = time.time() while time.time() - start_time < pull_interval_seconds: if concurrent: threads = [] for name in collection_names: task_name = random.choice(tasks) task_run = getattr(milvus_instances_map[name], task_name) t = threading.Thread(target=task_run, args=()) threads.append(t) t.start() for t in threads: t.join() # with concurrent.futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor: # future_results = {executor.submit(getattr(milvus_instances_map[mp[j][0]], mp[j][1])): j for j in range(concurrent_num)} # for future in concurrent.futures.as_completed(future_results): # future.result() else: tmp_collection_name = random.choice(collection_names) task_name = random.choice(tasks) logger.info(tmp_collection_name) logger.info(task_name) task_run = getattr(milvus_instances_map[tmp_collection_name], task_name) task_run() # new connection # for name in collection_names: # milvus_instance = MilvusClient(collection_name=name, host=self.host) # milvus_instances_map.update({name: milvus_instance}) i = i + 1 elif run_type == "locust_mix_performance": (data_type, collection_size, dimension, metric_type) = parser.collection_parser( collection_name) ni_per = collection["ni_per"] build_index = collection["build_index"] vector_type = self.get_vector_type(data_type) index_field_name = utils.get_default_field_name(vector_type) # drop exists collection if milvus_instance.exists_collection(): milvus_instance.drop() time.sleep(10) # create collection other_fields = collection["other_fields"] if "other_fields" in collection else None milvus_instance.create_collection(dimension, data_type=DataType.FLOAT_VECTOR, collection_name=collection_name, other_fields=other_fields) logger.info(milvus_instance.get_info()) # insert entities insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(ni_per)] insert_ids = random.sample(list(range(collection_size)), ni_per) insert_vectors = utils.normalize(metric_type, insert_vectors) entities = milvus_instance.generate_entities(insert_vectors, insert_ids, collection_name) milvus_instance.insert(entities, ids=insert_ids) # flush milvus_instance.flush() logger.info(milvus_instance.get_stats()) logger.debug("Table row counts: %d" % milvus_instance.count()) # create index if build_index is True: index_type = collection["index_type"] index_param = collection["index_param"] logger.debug("Start build index for last file") milvus_instance.create_index(index_field_name, index_type, metric_type, index_param) logger.debug(milvus_instance.describe_index()) # locust task = collection["tasks"] task_file = utils.get_unique_name() task_file_script = task_file + '.py' task_file_csv = task_file + '_stats.csv' task_types = task["types"] connection_type = "single" connection_num = task["connection_num"] if connection_num > 1: connection_type = "multi" clients_num = task["clients_num"] hatch_rate = task["hatch_rate"] during_time = task["during_time"] def_strs = "" # define def str for task_type in task_types: type = task_type["type"] weight = task_type["weight"] if type == "flush": def_str = """ @task(%d) def flush(self): client = get_client(collection_name) client.flush(collection_name=collection_name) """ % weight if type == "compact": def_str = """ @task(%d) def compact(self): client = get_client(collection_name) client.compact(collection_name) """ % weight if type == "query": def_str = """ @task(%d) def query(self): client = get_client(collection_name) params = %s X = [[random.random() for i in range(dim)] for i in range(params["nq"])] vector_query = {"vector": {"%s": { "topk": params["top_k"], "query": X, "metric_type": "%s", "params": params["search_param"]}}} client.query(vector_query, filter_query=params["filters"], collection_name=collection_name) """ % (weight, task_type["params"], index_field_name, utils.metric_type_trans(metric_type)) if type == "insert": def_str = """ @task(%d) def insert(self): client = get_client(collection_name) params = %s insert_ids = random.sample(list(range(100000)), params["nb"]) insert_vectors = [[random.random() for _ in range(dim)] for _ in range(params["nb"])] insert_vectors = utils.normalize("l2", insert_vectors) entities = generate_entities(insert_vectors, insert_ids) client.insert(entities,ids=insert_ids, collection_name=collection_name) """ % (weight, task_type["params"]) if type == "delete": def_str = """ @task(%d) def delete(self): client = get_client(collection_name) ids = [random.randint(1, 1000000) for i in range(1)] client.delete(ids, collection_name) """ % weight def_strs += def_str print(def_strs) # define locust code str code_str = """ import random import json from locust import User, task, between from locust_task import MilvusTask from client import MilvusClient import utils host = '%s' port = %s collection_name = '%s' dim = %s connection_type = '%s' m = MilvusClient(host=host, port=port) def get_client(collection_name): if connection_type == 'single': return MilvusTask(m=m) elif connection_type == 'multi': return MilvusTask(connection_type='multi', host=host, port=port, collection_name=collection_name) def generate_entities(vectors, ids): return m.generate_entities(vectors, ids, collection_name) class MixTask(User): wait_time = between(0.001, 0.002) %s """ % (self.host, self.port, collection_name, dimension, connection_type, def_strs) with open(task_file_script, "w+") as fd: fd.write(code_str) locust_cmd = "locust -f %s --headless --csv=%s -u %d -r %d -t %s" % ( task_file_script, task_file, clients_num, hatch_rate, during_time) logger.info(locust_cmd) try: res = os.system(locust_cmd) except Exception as e: logger.error(str(e)) return # . retrieve and collect test statistics metric = None with open(task_file_csv, newline='') as fd: dr = csv.DictReader(fd) for row in dr: if row["Name"] != "Aggregated": continue metric = row logger.info(metric) else: raise Exception("Run type not defined") logger.debug("All test finished")