Ejemplo n.º 1
0
def run_rec():
    # This is where we write the images, if an output_dir is given
    # in command line:
    out_dir = None
    # Now read in the image data. This must be a valid path!
    [X,y] = read_images('images')
    # Then set up a handler for logging:
    handler = logging.StreamHandler(sys.stdout)
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    handler.setFormatter(formatter)
    # Add handler to facerec modules, so we see what's going on inside:
    logger = logging.getLogger("facerec")
    logger.addHandler(handler)
    logger.setLevel(logging.DEBUG)
    # Define the Fisherfaces as Feature Extraction method:
    feature = Fisherfaces()
    # Define a 1-NN classifier with Euclidean Distance:
    classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1)
    # Define the model as the combination
    my_model = PredictableModel(feature=feature, classifier=classifier)
    # Compute the Fisherfaces on the given data (in X) and labels (in y):
    my_model.compute(X, y)
    # We then save the model, which uses Pythons pickle module:
    save_model('model.pkl', my_model)

    model = load_model('model.pkl')
    # Then turn the first (at most) 16 eigenvectors into grayscale
    # images (note: eigenvectors are stored by column!)
    #E = []
    #for i in xrange(min(model.feature.eigenvectors.shape[1], 16)):
    #    e = model.feature.eigenvectors[:,i].reshape(X[0].shape)
    #    E.append(minmax_normalize(e,0,255, dtype=np.uint8))
    # Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf"
    #subplot(title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png")
    # Perform a 10-fold cross validation
    cv = KFoldCrossValidation(model, k=10)
    cv.validate(X, y)
    # And print the result:
    cv.print_results()

    im = Image.open('search.png')
    im = im.convert("L")
    predicted_label = model.predict(im)[0]

    print(predicted_label)
    return predicted_label
Ejemplo n.º 2
0
def run_rec():
    # This is where we write the images, if an output_dir is given
    # in command line:
    out_dir = None
    # Now read in the image data. This must be a valid path!
    [X, y] = read_images('images')
    # Then set up a handler for logging:
    handler = logging.StreamHandler(sys.stdout)
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    handler.setFormatter(formatter)
    # Add handler to facerec modules, so we see what's going on inside:
    logger = logging.getLogger("facerec")
    logger.addHandler(handler)
    logger.setLevel(logging.DEBUG)
    # Define the Fisherfaces as Feature Extraction method:
    feature = Fisherfaces()
    # Define a 1-NN classifier with Euclidean Distance:
    classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1)
    # Define the model as the combination
    my_model = PredictableModel(feature=feature, classifier=classifier)
    # Compute the Fisherfaces on the given data (in X) and labels (in y):
    my_model.compute(X, y)
    # We then save the model, which uses Pythons pickle module:
    save_model('model.pkl', my_model)

    model = load_model('model.pkl')
    # Then turn the first (at most) 16 eigenvectors into grayscale
    # images (note: eigenvectors are stored by column!)
    #E = []
    #for i in xrange(min(model.feature.eigenvectors.shape[1], 16)):
    #    e = model.feature.eigenvectors[:,i].reshape(X[0].shape)
    #    E.append(minmax_normalize(e,0,255, dtype=np.uint8))
    # Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf"
    #subplot(title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png")
    # Perform a 10-fold cross validation
    cv = KFoldCrossValidation(model, k=10)
    cv.validate(X, y)
    # And print the result:
    cv.print_results()

    im = Image.open('search.png')
    im = im.convert("L")
    predicted_label = model.predict(im)[0]

    print(predicted_label)
    return predicted_label
Ejemplo n.º 3
0
    logger.addHandler(handler)
    logger.setLevel(logging.DEBUG)
    # Define the Fisherfaces as Feature Extraction method:
    feature = SpatialHistogram()
    #feature = Fisherfaces()
    # Define a 1-NN classifier with Euclidean Distance:
    classifier = NearestNeighbor(dist_metric=NormalizedCorrelation(), k=1)
    #classifier = SVM()
    # Define the model as the combination
    my_model = PredictableModel(feature=feature, classifier=classifier)
    # Compute the Fisherfaces on the given data (in X) and labels (in y):
    my_model.compute(X, y)
    # We then save the model, which uses Pythons pickle module:
    save_model('modelTry.pkl', my_model)
    model = load_model('modelTry.pkl')
    # Then turn the first (at most) 16 eigenvectors into grayscale
    # images (note: eigenvectors are stored by column!)
    E = []
    #for i in range(min(model.feature.eigenvectors.shape[1], 16)):
    #    e = model.feature.eigenvectors[:,i].reshape(X[0].shape)
    #    E.append(minmax_normalize(e,0,255, dtype=np.uint8))
    # Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf"
    subplot(title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png")
    # Perform a 10-fold cross validation
    cv = KFoldCrossValidation(model, k=10)
    cv.validate(X, y)
    # And print the result:
    cv.print_results()


Ejemplo n.º 4
0
import numpy as np
from tools import load_data
from models import FrequencyModel, TfIdfModel
from validation import KFoldCrossValidation, MAPn

# load data
path_to_data = "data/"
training, training_info, test, test_info = load_data(path_to_data)

# create model
nb_recipients_to_predict = 10
model = FrequencyModel(nb_recipients_to_predict=nb_recipients_to_predict)

# validation
n_split = 5
cross_validation = KFoldCrossValidation(n_split)

scores = []
for fold_nb, (training_fold, training_info_fold, test_fold, test_info_fold,
              y_test_fold) in enumerate(
                  cross_validation.split(training, training_info)):
    print("\nFold #%d..." % fold_nb)

    # fit model
    model.fit(training_fold, training_info_fold)

    # predict
    predictions_per_sender = model.predict(test_fold, test_info_fold)

    # compute MAP@n
    score = MAPn(predictions_per_sender, y_test_fold, nb_recipients_to_predict)
    # Add handler to facerec modules, so we see what's going on inside:
    logger = logging.getLogger("facerec")
    logger.addHandler(handler)
    logger.setLevel(logging.DEBUG)
    # Define the Fisherfaces as Feature Extraction method:
    feature = Fisherfaces()
    # Define a 1-NN classifier with Euclidean Distance:
    classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1)
    # Define the model as the combination
    my_model = PredictableModel(feature=feature, classifier=classifier)
    # Compute the Fisherfaces on the given data (in X) and labels (in y):
    my_model.compute(X, y)
    # We then save the model, which uses Pythons pickle module:
    save_model("model.pkl", my_model)
    model = load_model("model.pkl")
    # Then turn the first (at most) 16 eigenvectors into grayscale
    # images (note: eigenvectors are stored by column!)
    E = []
    for i in xrange(min(model.feature.eigenvectors.shape[1], 16)):
        e = model.feature.eigenvectors[:, i].reshape(X[0].shape)
        E.append(minmax_normalize(e, 0, 255, dtype=np.uint8))
    # Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf"
    subplot(
        title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png"
    )
    # Perform a 10-fold cross validation
    cv = KFoldCrossValidation(model, k=10)
    cv.validate(X, y)
    # And print the result:
    cv.print_results()