def run_rec(): # This is where we write the images, if an output_dir is given # in command line: out_dir = None # Now read in the image data. This must be a valid path! [X,y] = read_images('images') # Then set up a handler for logging: handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # Add handler to facerec modules, so we see what's going on inside: logger = logging.getLogger("facerec") logger.addHandler(handler) logger.setLevel(logging.DEBUG) # Define the Fisherfaces as Feature Extraction method: feature = Fisherfaces() # Define a 1-NN classifier with Euclidean Distance: classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1) # Define the model as the combination my_model = PredictableModel(feature=feature, classifier=classifier) # Compute the Fisherfaces on the given data (in X) and labels (in y): my_model.compute(X, y) # We then save the model, which uses Pythons pickle module: save_model('model.pkl', my_model) model = load_model('model.pkl') # Then turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) #E = [] #for i in xrange(min(model.feature.eigenvectors.shape[1], 16)): # e = model.feature.eigenvectors[:,i].reshape(X[0].shape) # E.append(minmax_normalize(e,0,255, dtype=np.uint8)) # Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf" #subplot(title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png") # Perform a 10-fold cross validation cv = KFoldCrossValidation(model, k=10) cv.validate(X, y) # And print the result: cv.print_results() im = Image.open('search.png') im = im.convert("L") predicted_label = model.predict(im)[0] print(predicted_label) return predicted_label
def run_rec(): # This is where we write the images, if an output_dir is given # in command line: out_dir = None # Now read in the image data. This must be a valid path! [X, y] = read_images('images') # Then set up a handler for logging: handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # Add handler to facerec modules, so we see what's going on inside: logger = logging.getLogger("facerec") logger.addHandler(handler) logger.setLevel(logging.DEBUG) # Define the Fisherfaces as Feature Extraction method: feature = Fisherfaces() # Define a 1-NN classifier with Euclidean Distance: classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1) # Define the model as the combination my_model = PredictableModel(feature=feature, classifier=classifier) # Compute the Fisherfaces on the given data (in X) and labels (in y): my_model.compute(X, y) # We then save the model, which uses Pythons pickle module: save_model('model.pkl', my_model) model = load_model('model.pkl') # Then turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) #E = [] #for i in xrange(min(model.feature.eigenvectors.shape[1], 16)): # e = model.feature.eigenvectors[:,i].reshape(X[0].shape) # E.append(minmax_normalize(e,0,255, dtype=np.uint8)) # Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf" #subplot(title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png") # Perform a 10-fold cross validation cv = KFoldCrossValidation(model, k=10) cv.validate(X, y) # And print the result: cv.print_results() im = Image.open('search.png') im = im.convert("L") predicted_label = model.predict(im)[0] print(predicted_label) return predicted_label
logger.addHandler(handler) logger.setLevel(logging.DEBUG) # Define the Fisherfaces as Feature Extraction method: feature = SpatialHistogram() #feature = Fisherfaces() # Define a 1-NN classifier with Euclidean Distance: classifier = NearestNeighbor(dist_metric=NormalizedCorrelation(), k=1) #classifier = SVM() # Define the model as the combination my_model = PredictableModel(feature=feature, classifier=classifier) # Compute the Fisherfaces on the given data (in X) and labels (in y): my_model.compute(X, y) # We then save the model, which uses Pythons pickle module: save_model('modelTry.pkl', my_model) model = load_model('modelTry.pkl') # Then turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] #for i in range(min(model.feature.eigenvectors.shape[1], 16)): # e = model.feature.eigenvectors[:,i].reshape(X[0].shape) # E.append(minmax_normalize(e,0,255, dtype=np.uint8)) # Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf" subplot(title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png") # Perform a 10-fold cross validation cv = KFoldCrossValidation(model, k=10) cv.validate(X, y) # And print the result: cv.print_results()
import numpy as np from tools import load_data from models import FrequencyModel, TfIdfModel from validation import KFoldCrossValidation, MAPn # load data path_to_data = "data/" training, training_info, test, test_info = load_data(path_to_data) # create model nb_recipients_to_predict = 10 model = FrequencyModel(nb_recipients_to_predict=nb_recipients_to_predict) # validation n_split = 5 cross_validation = KFoldCrossValidation(n_split) scores = [] for fold_nb, (training_fold, training_info_fold, test_fold, test_info_fold, y_test_fold) in enumerate( cross_validation.split(training, training_info)): print("\nFold #%d..." % fold_nb) # fit model model.fit(training_fold, training_info_fold) # predict predictions_per_sender = model.predict(test_fold, test_info_fold) # compute MAP@n score = MAPn(predictions_per_sender, y_test_fold, nb_recipients_to_predict)
# Add handler to facerec modules, so we see what's going on inside: logger = logging.getLogger("facerec") logger.addHandler(handler) logger.setLevel(logging.DEBUG) # Define the Fisherfaces as Feature Extraction method: feature = Fisherfaces() # Define a 1-NN classifier with Euclidean Distance: classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1) # Define the model as the combination my_model = PredictableModel(feature=feature, classifier=classifier) # Compute the Fisherfaces on the given data (in X) and labels (in y): my_model.compute(X, y) # We then save the model, which uses Pythons pickle module: save_model("model.pkl", my_model) model = load_model("model.pkl") # Then turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] for i in xrange(min(model.feature.eigenvectors.shape[1], 16)): e = model.feature.eigenvectors[:, i].reshape(X[0].shape) E.append(minmax_normalize(e, 0, 255, dtype=np.uint8)) # Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf" subplot( title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png" ) # Perform a 10-fold cross validation cv = KFoldCrossValidation(model, k=10) cv.validate(X, y) # And print the result: cv.print_results()