Example #1
0
def get_kaggle_reader(validation_pct=.2):
    train_file = Path('./train.zip')
    test_file = Path('./test.zip')
    if not train_file.is_file() or not test_file.is_file():
        print('👇👇👇👇👇👇👇👇👇👇👇👇👇')
        print(
            'Please put train.zip and test.zip from '
            'https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition to project root path.'
        )
        raise FileNotFoundError()

    train_arc = ZipTarReader.auto(train_file.name)
    test_arc = ZipTarReader.auto(test_file.name)

    file_list = train_arc.shuffled_namelist()
    file_list = np.array(file_list)
    mid = int(len(file_list) * validation_pct)
    train_file_list = file_list[mid:]
    vali_file_list = file_list[:mid]

    return BatchReader.BatchReader(train_arc, train_file_list, KaggleLabelClassifier),\
        BatchReader.BatchReader(train_arc, vali_file_list, KaggleLabelClassifier),\
        BatchReader.BatchReader(test_arc, test_arc.namelist(), KaggleLabelClassifier)
Example #2
0
def main(args):
    batch_size = 6
    if FLAGS.mode == 'decode':
        batch_size = FLAGS.beam_size

    hps = ABS.HParams(
        batch_size=batch_size,
        mode=FLAGS.mode,
        num_softmax_samples=4056,
        min_lr=0.01,
        lr=0.9,
        hid_dim=400,
        emb_dim=200,
        max_grad_norm=2,
        min_input_len=2,  # discard articles/summaries < than this
        C=5,
        Q=2,
        dec_timesteps=90,
        enc_timesteps=520)
    vocab = Data.Vocab(FLAGS.vocab_path)
    batcher = BatchReader.Batcher(
        vocab,
        hps,
        max_article_sentences=FLAGS.max_article_sentences,
        max_abstract_sentences=FLAGS.max_abstract_sentences,
    )
    vocab_size = vocab.NumIds()
    pad_id = vocab.WordToId(Data.PAD_TOKEN)
    tf.set_random_seed(FLAGS.random_seed)
    if hps.mode == 'train':
        model = ABS.ABS(hps, pad_id, vocab_size)
        _Train(model, batcher)
    elif hps.mode == 'decode':
        newhps = hps._replace(dec_timesteps=hps.C)
        model = ABS.ABS(hps, pad_id, vocab_size)
        decoder = Decode.BSDecoder(model, batcher, newhps, vocab)
        decoder.DecodeLoop()
Example #3
0
def main(argv=None):
    # define placeholder{keep_probability,image,annotation}
    keep_probability = tf.placeholder(tf.float32, name="keep_probabilty")
    image = tf.placeholder(tf.float32,
                           shape=[None, IMAGE_SIZE, IMAGE_SIZE, 3],
                           name="input_image")
    annotation = tf.placeholder(tf.int32,
                                shape=[None, IMAGE_SIZE, IMAGE_SIZE, 1],
                                name="annotation")

    # execute inference then get pred_annotation, logits, and loss
    pred_annotation, logits = inference(image, keep_probability)
    tf.summary.image("input_image", image, max_outputs=2)
    tf.summary.image("ground_truth",
                     tf.cast(annotation, tf.uint8),
                     max_outputs=2)
    tf.summary.image("pred_annotation",
                     tf.cast(pred_annotation, tf.uint8),
                     max_outputs=2)
    loss = tf.reduce_mean((tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=logits,
        labels=tf.squeeze(annotation, squeeze_dims=[3]),
        name="entropy")))
    tf.summary.scalar("entropy", loss)

    trainable_var = tf.trainable_variables()

    train_op = train(loss, trainable_var)

    print("Setting up summary op...")
    summary_op = tf.summary.merge_all()

    print("Setting up image reader...")
    # Data_zoo/MIT_SceneParsing/
    train_records, valid_records = scene_parsing.read_dataset(FLAGS.data_dir)
    print(len(train_records))
    print(len(valid_records))

    print("Setting up dataset reader")
    image_options = {'resize': True, 'resize_size': IMAGE_SIZE}
    if FLAGS.mode == 'train':
        train_dataset_reader = dataset.BatchDatset(train_records,
                                                   image_options)
    validation_dataset_reader = dataset.BatchDatset(valid_records,
                                                    image_options)

    sess = tf.Session()

    print("Setting up Saver...")
    saver = tf.train.Saver()
    summary_writer = tf.summary.FileWriter(FLAGS.logs_dir, sess.graph)

    sess.run(tf.global_variables_initializer())
    ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir)
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
        print("Model restored...")

    if FLAGS.mode == "train":
        for itr in range(MAX_ITERATION):
            train_images, train_annotations = train_dataset_reader.next_batch(
                FLAGS.batch_size)
            feed_dict = {
                image: train_images,
                annotation: train_annotations,
                keep_probability: 0.85
            }

            sess.run(train_op, feed_dict=feed_dict)

            if itr % 10 == 0:
                train_loss, summary_str = sess.run([loss, summary_op],
                                                   feed_dict=feed_dict)
                print("Step: %d, Train_loss:%g" % (itr, train_loss))
                summary_writer.add_summary(summary_str, itr)

            if itr % 500 == 0:
                valid_images, valid_annotations = validation_dataset_reader.next_batch(
                    FLAGS.batch_size)
                valid_loss = sess.run(loss,
                                      feed_dict={
                                          image: valid_images,
                                          annotation: valid_annotations,
                                          keep_probability: 1.0
                                      })
                print("%s ---> Validation_loss: %g" %
                      (datetime.datetime.now(), valid_loss))
                saver.save(sess, FLAGS.logs_dir + "model.ckpt", itr)

    elif FLAGS.mode == "visualize":
        valid_images, valid_annotations = validation_dataset_reader.get_random_batch(
            FLAGS.batch_size)
        pred = sess.run(pred_annotation,
                        feed_dict={
                            image: valid_images,
                            annotation: valid_annotations,
                            keep_probability: 1.0
                        })
        # single channle
        valid_annotations = np.squeeze(valid_annotations, axis=3)
        pred = np.squeeze(pred, axis=3)

        for itr in range(FLAGS.batch_size):
            utils.save_image(valid_images[itr].astype(np.uint8),
                             FLAGS.logs_dir,
                             name="inp_" + str(5 + itr))
            utils.save_image(valid_annotations[itr].astype(np.uint8),
                             FLAGS.logs_dir,
                             name="gt_" + str(5 + itr))
            utils.save_image(pred[itr].astype(np.uint8),
                             FLAGS.logs_dir,
                             name="pred_" + str(5 + itr))
            print("Saved image: %d" % itr)
def evaluate_lenet5(learning_rate=0.1, n_epochs=200,
                    dataset='mnist.pkl.gz',
                    nkerns=[20, 50], batch_size=500):
    """ Demonstrates lenet on MNIST dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
                          gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: path to the dataset used for training /testing (MNIST here)

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer
    """

    rng = numpy.random.RandomState(23455)
    br = BatchReader.inputs()
    br2 = BatchReader.inputs(testingData = True)

    X, Y = br.getNPArray(2)
    train_set_x = theano.shared(X[0:50000*0.6].astype(float))
    train_set_y = theano.shared(Y[0:50000*0.6].astype('int32'))
    valid_set_x = theano.shared(X[50000*0.6:50000*0.9].astype(float))
    valid_set_y = theano.shared(Y[50000*0.6:50000*0.9].astype('int32'))
    test_set_x = theano.shared(X[50000*0.9:50000].astype(float))
    test_set_y = theano.shared(Y[50000*0.9:50000].astype('int32'))

    #datasets = load_data(dataset)

    #train_set_x, train_set_y = datasets[0]
    #valid_set_x, valid_set_y = datasets[1]
    #test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches /= batch_size
    n_valid_batches /= batch_size
    n_test_batches /= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    # start-snippet-1
    x = T.matrix('x')   # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print '... building the model'

    # Reshape matrix of rasterized images of shape (batch_size, 28 * 28)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    # (28, 28) is the size of MNIST images.
    layer0_input = x.reshape((batch_size, 1, 48, 48))

    # Construct the first convolutional pooling layer:
    # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24)
    # maxpooling reduces this further to (24/2, 24/2) = (12, 12)
    # 4D output tensor is thus of shape (batch_size, nkerns[0], 12, 12)
    layer0 = LeNetConvPoolLayer(
        rng,
        input=layer0_input,
        image_shape=(batch_size, 1, 48, 48),
        filter_shape=(nkerns[0], 1, 9, 9),
        poolsize=(2, 2)
    )

    # Construct the second convolutional pooling layer
    # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8)
    # maxpooling reduces this further to (8/2, 8/2) = (4, 4)
    # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4)
    layer1 = LeNetConvPoolLayer(
        rng,
        input=layer0.output,
        image_shape=(batch_size, nkerns[0], 20, 20),
        filter_shape=(nkerns[1], nkerns[0], 8, 8),
        poolsize=(2, 2)
    )

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4),
    # or (500, 50 * 4 * 4) = (500, 800) with the default values.
    layer2_input = layer1.output.flatten(2)

    # construct a fully-connected sigmoidal layer
    layer2 = HiddenLayer(
        rng,
        input=layer2_input,
        n_in=nkerns[1] * 6 * 6,
        n_out=500,
        activation=T.tanh
    )

    # classify the values of the fully-connected sigmoidal layer
    layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10)

    # the cost we minimize during training is the NLL of the model
    cost = layer3.negative_log_likelihood(y)
    print type(test_set_x)
    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: test_set_x[index * batch_size: (index + 1) * batch_size],
            y: test_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    validate_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: valid_set_x[index * batch_size: (index + 1) * batch_size],
            y: valid_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    # create a list of all model parameters to be fit by gradient descent
    params = layer3.params + layer2.params + layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.
    updates = [
        (param_i, param_i - learning_rate * grad_i)
        for param_i, grad_i in zip(params, grads)
    ]

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )
    # end-snippet-1

    ###############
    # TRAIN MODEL #
    ###############
    print '... training'
    # early-stopping parameters
    patience = 10000  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
                           # found
    improvement_threshold = 0.995  # a relative improvement of this much is
                                   # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
                                  # go through this many
                                  # minibatche before checking the network
                                  # on the validation set; in this case we
                                  # check every epoch

    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.
    start_time = timeit.default_timer()

    epoch = 0
    done_looping = False

    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):

            iter = (epoch - 1) * n_train_batches + minibatch_index

            if iter % 100 == 0:
                print 'training @ iter = ', iter
            cost_ij = train_model(minibatch_index)

            if (iter + 1) % validation_frequency == 0:

                # compute zero-one loss on validation set
                validation_losses = [validate_model(i) for i
                                     in xrange(n_valid_batches)]
                this_validation_loss = numpy.mean(validation_losses)
                print('epoch %i, minibatch %i/%i, validation error %f %%' %
                      (epoch, minibatch_index + 1, n_train_batches,
                       this_validation_loss * 100.))

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:

                    #improve patience if loss improvement is good enough
                    if this_validation_loss < best_validation_loss *  \
                       improvement_threshold:
                        patience = max(patience, iter * patience_increase)

                    # save best validation score and iteration number
                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    # test it on the test set
                    test_losses = [
                        test_model(i)
                        for i in xrange(n_test_batches)
                    ]
                    test_score = numpy.mean(test_losses)
                    print(('     epoch %i, minibatch %i/%i, test error of '
                           'best model %f %%') %
                          (epoch, minibatch_index + 1, n_train_batches,
                           test_score * 100.))

            if patience <= iter:
                done_looping = True
                break

    end_time = timeit.default_timer()
    print('Optimization complete.')
    print('Best validation score of %f %% obtained at iteration %i, '
          'with test performance %f %%' %
          (best_validation_loss * 100., best_iter + 1, test_score * 100.))
    print >> sys.stderr, ('The code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.))
						  
    print "Dumping parameters to ../data/convnet.pkl"
    dir = os.getcwd()
    path = os.path.join(dir,"../data")
    os.chdir(path)

    with open( "convnet.pkl" , 'wb') as file:
        dict = {
        "layer0" : layer0.param,
        "layer1" : layer1.param,
		"layer2" : layer2.param,
		"layer3" : layer3.param
        }
        pickle.dump(dict, file, 2 )
        os.chdir(dir)
Example #5
0
import BatchReader as dataset

import tensorflow as tf
import numpy as np

max_it =int(1e4 + 1)
IMAGE_HEIGHT = 64
IMAGE_WIDTH = 256
MAX_CAPTCHA = 5
CHAR_SET_LEN = 10
batch_size = 64
file = open('acc.txt','a')

train_dataset_reader = dataset.BatchReader(index_file='index')
X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT*IMAGE_WIDTH])
Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA*CHAR_SET_LEN])
keep_prob = tf.placeholder(tf.float32) # dropout

# CNN
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
	x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
	# 4 conv layer
	w_c1 = tf.Variable(w_alpha*tf.random_normal([3, 3, 1, 32]))
	b_c1 = tf.Variable(b_alpha*tf.random_normal([32]))
	conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))
	conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
	conv1 = tf.nn.dropout(conv1, keep_prob)

	w_c2 = tf.Variable(w_alpha*tf.random_normal([3, 3, 32, 64]))
	b_c2 = tf.Variable(b_alpha*tf.random_normal([64]))
	conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))
Example #6
0
def main(argv=None):
    keep_probability = tf.placeholder(tf.float32, name="keep_probabilty")
    learning_rate = tf.placeholder(tf.float32, name="learning_rate")
    image = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 7], name="input_image")
    annotation = tf.placeholder(tf.int32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 1], name="annotation")

    pred_annotation_value, pred_annotation, logits = inference(image, keep_probability)
    #logits:the last layer of conv net
    #labels:the ground truth
    
    at = float(cfgs.at)
    a_w = (1- 2*at) * tf.cast(tf.squeeze(annotation, squeeze_dims=[3]), tf.float32) + at
    

    pro = tf.nn.softmax(logits)
     
    loss_weight = tf.pow(1-tf.reduce_sum(pro * tf.one_hot(tf.squeeze(annotation, squeeze_dims=[3]), cfgs.NUM_OF_CLASSESS), 3), cfgs.gamma)
     
    
    loss = tf.reduce_mean(loss_weight * a_w * tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
                                                                                       labels=tf.squeeze(annotation, squeeze_dims=[3]),
                                                                                       name="entropy"))


    valid_loss = tf.reduce_mean((tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
                                                                          labels=tf.squeeze(annotation, squeeze_dims=[3]),
                                                                          name="valid_entropy")))
   
    tf.summary.scalar("train_loss", loss)
    tf.summary.scalar("valid_loss", valid_loss)
    tf.summary.scalar("learning_rate", learning_rate)

    trainable_var = tf.trainable_variables()
    if cfgs.debug:
        for var in trainable_var:
            utils.add_to_regularization_and_summary(var)
    train_op = train(loss, trainable_var, learning_rate)

    print("Setting up summary op...")
    summary_op = tf.summary.merge_all()
    
    #Check if has the log file
    if not os.path.exists(cfgs.logs_dir):
        print("The logs path '%s' is not found" % cfgs.logs_dir)
        print("Create now..")
        os.makedirs(cfgs.logs_dir)
        print("%s is created successfully!" % cfgs.logs_dir)

    #Create a file to write logs.
    #filename='logs'+ cfgs.mode + str(datatime.datatime.now()) + '.txt'
    filename="logs_%s%s.txt"%(cfgs.mode,datetime.datetime.now())
    path_=os.path.join(cfgs.logs_dir,filename)
    with open(path_,'w') as logs_file:
        logs_file.write("The logs file is created at %s.\n" % datetime.datetime.now())
        logs_file.write("The model is ---%s---.\n" % cfgs.logs_dir)
        logs_file.write("The mode is %s\n"% (cfgs.mode))
        logs_file.write("The train data batch size is %d and the validation batch size is %d\n."%(cfgs.batch_size,cfgs.v_batch_size))
        logs_file.write("The data size is %d and the MAX_ITERATION is %d.\n" % (IMAGE_SIZE, MAX_ITERATION))
        logs_file.write("Setting up image reader...")

    
    print("Setting up image reader...")
    train_records, valid_records = scene_parsing.my_read_dataset(cfgs.seq_list_path, cfgs.anno_path)
    print('number of train_records',len(train_records))
    print('number of valid_records',len(valid_records))
    with open(path_, 'a') as logs_file:
        logs_file.write('number of train_records %d\n' % len(train_records))
        logs_file.write('number of valid_records %d\n' % len(valid_records))

    path_lr = cfgs.learning_rate_path
    with open(path_lr, 'r') as f:
        lr_ = float(f.readline().split('\n')[0])


    print("Setting up dataset reader")
    vis = True if cfgs.mode == 'all_visualize' else False
    image_options = {'resize': True, 'resize_size': IMAGE_SIZE, 'visualize': vis, 'annotation':True}

    if cfgs.mode == 'train':
        train_dataset_reader = dataset.BatchDatset(train_records, image_options)
   
    validation_dataset_reader = dataset.BatchDatset(valid_records, image_options)
    #save current train itr from stopping(init = 0)
    current_itr_var = tf.Variable(0, dtype=tf.int32, name='current_itr')
    sess = tf.Session()

    print("Setting up Saver...")
    saver = tf.train.Saver()
    summary_writer = tf.summary.FileWriter(cfgs.logs_dir, sess.graph)

    sess.run(tf.global_variables_initializer())
    ckpt = tf.train.get_checkpoint_state(cfgs.logs_dir)
    #if not train,restore the model trained before
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
        print("Model restored...")

    num_=0
    current_itr = current_itr_var.eval(sess)
    print('itr\tmode\tlr_\tacc\tiou_acc\tloss')
    time_begin = time.time()
    valid_time = 100
    for itr in xrange(current_itr, MAX_ITERATION):
        
        with open(path_lr, 'r') as f:
            lr_ = float(f.readline().split('\n')[0])
        
        train_images, train_annotations, if_finish, epoch_no= train_dataset_reader.next_batch(cfgs.batch_size)
        if if_finish:
            print('Epochs%d finished, time comsumed:%.5f' % (epoch_no, time.time()-time_begin))
            time_begin = time.time()
        feed_dict = {image: train_images, annotation: train_annotations, keep_probability: 0.85, learning_rate: lr_}
        

        sess.run(train_op, feed_dict=feed_dict)
        logs_file = open(path_, 'a')  
        if itr % 10 == 0:
            train_loss, summary_str = sess.run([loss, summary_op], feed_dict=feed_dict)
            print('%d\t%s\t%g\t%s\t%s\t%.6f' % (itr, 'train',lr_, 'None','None',train_loss))
            summary_writer.add_summary(summary_str, itr)

        if itr % valid_time == 0:
            with open('time_to_valid.txt', 'r') as f:
                valid_time = int(f.readline().split('\n')[0])


            #Caculate the accurary at the training set.
            train_random_images, train_random_annotations = train_dataset_reader.get_random_batch_for_train(cfgs.v_batch_size)
            train_loss,train_pred_anno = sess.run([loss,pred_annotation], feed_dict={image:train_random_images,
                                                                                        annotation:train_random_annotations,
                                                                                        keep_probability:1.0})
            accu_iou_,accu_pixel_ = accu.caculate_accurary(train_pred_anno, train_random_annotations)
            print('%d\t%s\t%g\t%.5f\t%.5f\t%.6f' % (itr, 'train', lr_, accu_pixel_, accu_iou_, train_loss))
            #Output the logs.
            num_ = num_ + 1
            logs_file.write('%d\t%s\t%g\t%.5f\t%.5f\t%.6f\n' % (itr, 'train', lr_, accu_pixel_, accu_iou_, train_loss))

            valid_images, valid_annotations, _, _= validation_dataset_reader.next_batch(cfgs.v_batch_size)
            #valid_loss = sess.run(loss, feed_dict={image: valid_images, annotation: valid_annotations,
                                                       #keep_probability: 1.0})
            valid_loss_,pred_anno=sess.run([loss,pred_annotation],feed_dict={image:valid_images,
                                                                                      annotation:valid_annotations,
                                                                                      keep_probability:1.0})
            accu_iou,accu_pixel=accu.caculate_accurary(pred_anno,valid_annotations)
            print('%d\t%s\t%g\t%.5f\t%.5f\t%.6f' % (itr, 'valid', lr_, accu_pixel, accu_iou, valid_loss_))
            #Output the logs.
            logs_file.write('%d\t%s\t%g\t%.5f\t%.5f\t%.6f\n' % (itr, 'train', lr_, accu_pixel, accu_iou, valid_loss_))

            #record current itr
            sess.run(tf.assign(current_itr_var, itr))
            saver.save(sess, cfgs.logs_dir + "model.ckpt", itr)
            #End the iterator
        '''
        if itr % 10000 == 0 and itr > 0:
            lr_ = lr_/10
            print('learning rate change from %g to %g' %(lr_*10, lr_))
            logs_file.write('learning rate change from %g to %g\n' %(lr_*10, lr_))'''
        logs_file.close()
Example #7
0
 def get_data_video(self):
     with tf.device('/cpu:0'):
        self.video_dataset_reader = dataset.BatchDatset(self.valid_records, self.image_options)
Example #8
0
 def get_data(self):
     with tf.device('/cpu:0'):
         if self.mode == 'train':
             self.train_dataset_reader = dataset.BatchDatset(self.train_records, self.image_options)
         self.validation_dataset_reader = dataset.BatchDatset(self.valid_records, self.image_options)
            for angle in range(0,360,60):
                y_k.append(self.eval_net(
                        self.rotate( x[k*self.batch_size:(k+1)*self.batch_size],angle) 
                        )
                )
            y_i.append(np.float32(y_k).mean(axis=0))
        y = np.vstack(y_i)
        return y




if __name__ == '__main__':
    
    rng = numpy.random.RandomState(42)
    br = BatchReader.inputs()
    br2 = BatchReader.inputs(testingData = True)

    X, Y = br.getNPArray(2)
    testX = br2.getNPArray(2)
    nkerns = [35,70,35]

    print X.shape, Y.shape
    print testX.shape

    n_examples = X.shape[0]
    fs = foldsize = n_examples/K_FOLD
    
    # k folds
    for k in range(K_FOLD):
        trainX = np.vstack(
Example #10
0
            cur_frame = line[cfgs.seq_num + 1].split(' ')[0]
            cur_frame_s = cur_frame.split("/")
            filename = '%s%s' % (cur_frame_s[len(cur_frame_s) - 3],
                                 os.path.splitext(cur_frame_s[-1])[0])
            print(filename)
            #anno_frame = os.path.join(anno_folder, filename+'.bmp')
            record = {
                'current': cur_frame,
                'seq': seq_set,
                'filename': filename
            }
            #print(record)
            seq_list[directory].append(record)

        random.shuffle(seq_list[directory])
        no_of_images = len(seq_list[directory])
        print('No of %s files %d' % (directory, no_of_images))

    return seq_list


if __name__ == '__main__':

    training_records, validation_records = my_read_dataset(
        cfgs.seq_list_path, cfgs.anno_path)
    image_options = {'resize': True, 'resize_size': 224}

    train_reader = dataset.BatchDatset(training_records, image_options)

    train_reader._read_images()
Example #11
0
def main(argv=None):
    keep_probability = tf.placeholder(tf.float32, name="keep_probabilty")
    image = tf.placeholder(tf.float32,
                           shape=[None, IMAGE_SIZE, IMAGE_SIZE, 7],
                           name="input_image")
    annotation = tf.placeholder(tf.int32,
                                shape=[None, IMAGE_SIZE, IMAGE_SIZE, 1],
                                name="annotation")

    pred_annotation_value, pred_annotation, logits, pred_prob = inference(
        image, keep_probability)
    tf.summary.image("input_image", image, max_outputs=2)
    tf.summary.image("ground_truth",
                     tf.cast(annotation, tf.uint8),
                     max_outputs=2)
    tf.summary.image("pred_annotation",
                     tf.cast(pred_annotation, tf.uint8),
                     max_outputs=2)
    #logits:the last layer of conv net
    #labels:the ground truth
    loss = tf.reduce_mean((tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=logits,
        labels=tf.squeeze(annotation, squeeze_dims=[3]),
        name="entropy")))
    tf.summary.scalar("entropy", loss)

    trainable_var = tf.trainable_variables()
    if cfgs.debug:
        for var in trainable_var:
            utils.add_to_regularization_and_summary(var)

    print("Setting up summary op...")
    summary_op = tf.summary.merge_all()

    #Create a file to write logs.
    #filename='logs'+ cfgs.mode + str(datetime.datetime.now()) + '.txt'
    filename = "logs_%s%s.txt" % (cfgs.mode, datetime.datetime.now())
    path_ = os.path.join(cfgs.logs_dir, filename)
    logs_file = open(path_, 'w')
    logs_file.write("The logs file is created at %s\n" %
                    datetime.datetime.now())
    logs_file.write("The mode is %s\n" % (cfgs.mode))
    logs_file.write(
        "The train data batch size is %d and the validation batch size is %d.\n"
        % (cfgs.batch_size, cfgs.v_batch_size))
    logs_file.write("The train data is %s.\n" % (cfgs.data_dir))
    logs_file.write("The model is ---%s---.\n" % cfgs.logs_dir)

    print("Setting up image reader...")
    logs_file.write("Setting up image reader...\n")
    train_records, valid_records = scene_parsing.my_read_video_dataset(
        cfgs.seq_list_path, cfgs.anno_path)
    print('number of train_records', len(train_records))
    print('number of valid_records', len(valid_records))
    logs_file.write('number of train_records %d\n' % len(train_records))
    logs_file.write('number of valid_records %d\n' % len(valid_records))

    print("Setting up dataset reader")
    vis = True if cfgs.mode == 'all_visualize' else False
    image_options = {
        'resize': True,
        'resize_size': IMAGE_SIZE,
        'visualize': vis
    }

    if cfgs.mode == 'train':
        train_dataset_reader = dataset.BatchDatset(train_records,
                                                   image_options)
    validation_dataset_reader = dataset.BatchDatset(valid_records,
                                                    image_options)

    sess = tf.Session()

    print("Setting up Saver...")
    saver = tf.train.Saver()
    summary_writer = tf.summary.FileWriter(cfgs.logs_dir, sess.graph)

    sess.run(tf.global_variables_initializer())
    ckpt = tf.train.get_checkpoint_state(cfgs.logs_dir)
    #if not train,restore the model trained before
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
        print("Model restored...")

    if cfgs.mode == "accurary":
        count = 0
        if_con = True
        accu_iou_t = 0
        accu_pixel_t = 0

        while if_con:
            count = count + 1
            valid_images, valid_annotations, valid_filenames, if_con, start, end = validation_dataset_reader.next_batch_valid(
                cfgs.v_batch_size)
            valid_loss, pred_anno = sess.run(
                [loss, pred_annotation],
                feed_dict={
                    image: valid_images,
                    annotation: valid_annotations,
                    keep_probability: 1.0
                })
            accu_iou, accu_pixel = accu.caculate_accurary(
                pred_anno, valid_annotations)
            print("Ture %d ---> the data from %d to %d" % (count, start, end))
            print("%s ---> Validation_pixel_accuary: %g" %
                  (datetime.datetime.now(), accu_pixel))
            print("%s ---> Validation_iou_accuary: %g" %
                  (datetime.datetime.now(), accu_iou))
            #Output logs.
            logs_file.write("Ture %d ---> the data from %d to %d\n" %
                            (count, start, end))
            logs_file.write("%s ---> Validation_pixel_accuary: %g\n" %
                            (datetime.datetime.now(), accu_pixel))
            logs_file.write("%s ---> Validation_iou_accuary: %g\n" %
                            (datetime.datetime.now(), accu_iou))

            accu_iou_t = accu_iou_t + accu_iou
            accu_pixel_t = accu_pixel_t + accu_pixel
        print("%s ---> Total validation_pixel_accuary: %g" %
              (datetime.datetime.now(), accu_pixel_t / count))
        print("%s ---> Total validation_iou_accuary: %g" %
              (datetime.datetime.now(), accu_iou_t / count))
        #Output logs
        logs_file.write("%s ---> Total validation_pixel_accurary: %g\n" %
                        (datetime.datetime.now(), accu_pixel_t / count))
        logs_file.write("%s ---> Total validation_iou_accurary: %g\n" %
                        (datetime.datetime.now(), accu_iou_t / count))

    elif cfgs.mode == "all_visualize":

        re_save_dir = "%s%s" % (cfgs.result_dir, datetime.datetime.now())
        logs_file.write("The result is save at file'%s'.\n" % re_save_dir)
        logs_file.write("The number of part visualization is %d.\n" %
                        cfgs.v_batch_size)

        #Check the result path if exists.
        if not os.path.exists(re_save_dir):
            print("The path '%s' is not found." % re_save_dir)
            print("Create now ...")
            os.makedirs(re_save_dir)
            print("Create '%s' successfully." % re_save_dir)
            logs_file.write("Create '%s' successfully.\n" % re_save_dir)

        re_save_dir_im = os.path.join(re_save_dir, 'images')
        re_save_dir_heat = os.path.join(re_save_dir, 'heatmap')
        re_save_dir_ellip = os.path.join(re_save_dir, 'ellip')
        re_save_dir_transheat = os.path.join(re_save_dir, 'transheat')
        if not os.path.exists(re_save_dir_im):
            os.makedirs(re_save_dir_im)
        if not os.path.exists(re_save_dir_heat):
            os.makedirs(re_save_dir_heat)
        if not os.path.exists(re_save_dir_ellip):
            os.makedirs(re_save_dir_ellip)
        if not os.path.exists(re_save_dir_transheat):
            os.makedirs(re_save_dir_transheat)

        count = 0
        if_con = True
        accu_iou_t = 0
        accu_pixel_t = 0

        while if_con:
            count = count + 1
            valid_images, valid_filename, valid_cur_images, if_con, start, end = validation_dataset_reader.next_batch_video_valid(
                cfgs.v_batch_size)
            pred_value, pred, logits_, pred_prob_ = sess.run(
                [pred_annotation_value, pred_annotation, logits, pred_prob],
                feed_dict={
                    image: valid_images,
                    keep_probability: 1.0
                })
            print("Turn %d :----start from %d ------- to %d" %
                  (count, start, end))
            pred = np.squeeze(pred, axis=3)
            pred_value = np.squeeze(pred_value, axis=3)

            for itr in range(len(pred)):
                filename = valid_filename[itr]['filename']
                valid_images_ = pred_visualize(valid_cur_images[itr].copy(),
                                               pred[itr])
                utils.save_image(valid_images_.astype(np.uint8),
                                 re_save_dir_im,
                                 name="inp_" + filename)

                if cfgs.fit_ellip:
                    #valid_images_ellip=fit_ellipse_findContours_ori(valid_images[itr].copy(),np.expand_dims(pred[itr],axis=2).astype(np.uint8))
                    valid_images_ellip = fit_ellipse_findContours(
                        valid_cur_images[itr].copy(),
                        np.expand_dims(pred[itr], axis=2).astype(np.uint8))
                    utils.save_image(valid_images_ellip.astype(np.uint8),
                                     re_save_dir_ellip,
                                     name="ellip_" + filename)
                if cfgs.heatmap:
                    heat_map = density_heatmap(pred_prob_[itr, :, :, 1])
                    utils.save_image(heat_map.astype(np.uint8),
                                     re_save_dir_heat,
                                     name="heat_" + filename)
                if cfgs.trans_heat:
                    trans_heat_map = translucent_heatmap(
                        valid_cur_images[itr],
                        heat_map.astype(np.uint8).copy())
                    utils.save_image(trans_heat_map,
                                     re_save_dir_transheat,
                                     name="trans_heat_" + filename)
Example #12
0
import BatchReader as dataset
import os
import time
from CaptchaModel import Captcha

# load model
model = Captcha()
model.load_checkpoint('crack_capcha0.994400002956.model-9960')

# load dataset
dataset = dataset.BatchReader(ratio=0.01, test_size=1000)
images, labels = dataset.get_val_batch(0, 1000)

count = len(labels)
correct = 0

# start timing
start = time.time()
t = start

# start testing
for i in range(count):
    image = images[i]
    label = labels[i]
    pred = model.predict(image)
    text = ''.join(map(str, pred))
    if text == label:
        correct += 1
    else:
        print(label, text)
        pass
Example #13
0
        for var in trainable_var:
            utils.add_to_regularization_and_summary(var)
    train_op = train(loss, trainable_var)

    print("Setting up summary op...")
    summary_op = tf.summary.merge_all()

    print("Setting up image reader...")
    train_records, valid_records = scene_parsing.read_dataset(FLAGS.data_dir)
    print(len(train_records))
    print(len(valid_records))

    print("Setting up dataset reader")
    image_options = {'resize': True, 'resize_size': IMAGE_SIZE}
    if FLAGS.mode == 'train':
        train_dataset_reader = dataset.BatchDatset(train_records, image_options)
    validation_dataset_reader = dataset.BatchDatset(valid_records, image_options)

    sess = tf.Session()

    print("Setting up Saver...")
    saver = tf.train.Saver( max_to_keep=10)
    summary_writer = tf.summary.FileWriter(FLAGS.logs_dir+'/train', sess.graph)
    # tval_summary_writer = tf.summary.FileWriter(FLAGS.logs_dir + '/val', sess.graph)

    sess.run(tf.global_variables_initializer())
    ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir)
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
        print("Model restored...")
print(__doc__)

from sklearn import neighbors, linear_model
import BatchReader

reader = BatchReader.inputs()
array = reader.getNPArray(7809)

X_digits = array[0]
y_digits = array[1]

n_samples = len(X_digits)

X_train = X_digits[:.9*n_samples]
y_train = y_digits[:.9*n_samples]
X_test = X_digits[.9*n_samples:]
y_test = y_digits[.9*n_samples:]

logistic = linear_model.LogisticRegression()

print('LogisticRegression score: %f' % logistic.fit(X_train, y_train).score(X_test,y_test))
Example #15
0
def evaluate_lenet5(learning_rate=0.1,
                    n_epochs=200,
                    dataset='mnist.pkl.gz',
                    nkerns=[20, 50],
                    batch_size=500):
    """ Demonstrates lenet on MNIST dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
                          gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: path to the dataset used for training /testing (MNIST here)

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer
    """

    rng = numpy.random.RandomState(23455)
    br = BatchReader.inputs()
    br2 = BatchReader.inputs(testingData=True)

    X, Y = br.getNPArray(2)
    train_set_x = theano.shared(X[0:50000 * 0.6].astype(float))
    train_set_y = theano.shared(Y[0:50000 * 0.6].astype('int32'))
    valid_set_x = theano.shared(X[50000 * 0.6:50000 * 0.9].astype(float))
    valid_set_y = theano.shared(Y[50000 * 0.6:50000 * 0.9].astype('int32'))
    test_set_x = theano.shared(X[50000 * 0.9:50000].astype(float))
    test_set_y = theano.shared(Y[50000 * 0.9:50000].astype('int32'))

    #datasets = load_data(dataset)

    #train_set_x, train_set_y = datasets[0]
    #valid_set_x, valid_set_y = datasets[1]
    #test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches /= batch_size
    n_valid_batches /= batch_size
    n_test_batches /= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    # start-snippet-1
    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
    # [int] labels

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print '... building the model'

    # Reshape matrix of rasterized images of shape (batch_size, 28 * 28)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    # (28, 28) is the size of MNIST images.
    layer0_input = x.reshape((batch_size, 1, 48, 48))

    # Construct the first convolutional pooling layer:
    # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24)
    # maxpooling reduces this further to (24/2, 24/2) = (12, 12)
    # 4D output tensor is thus of shape (batch_size, nkerns[0], 12, 12)
    layer0 = LeNetConvPoolLayer(rng,
                                input=layer0_input,
                                image_shape=(batch_size, 1, 48, 48),
                                filter_shape=(nkerns[0], 1, 9, 9),
                                poolsize=(2, 2))

    # Construct the second convolutional pooling layer
    # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8)
    # maxpooling reduces this further to (8/2, 8/2) = (4, 4)
    # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4)
    layer1 = LeNetConvPoolLayer(rng,
                                input=layer0.output,
                                image_shape=(batch_size, nkerns[0], 20, 20),
                                filter_shape=(nkerns[1], nkerns[0], 8, 8),
                                poolsize=(2, 2))

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4),
    # or (500, 50 * 4 * 4) = (500, 800) with the default values.
    layer2_input = layer1.output.flatten(2)

    # construct a fully-connected sigmoidal layer
    layer2 = HiddenLayer(rng,
                         input=layer2_input,
                         n_in=nkerns[1] * 6 * 6,
                         n_out=500,
                         activation=T.tanh)

    # classify the values of the fully-connected sigmoidal layer
    layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10)

    # the cost we minimize during training is the NLL of the model
    cost = layer3.negative_log_likelihood(y)
    print type(test_set_x)
    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size]
        })

    validate_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
            y: valid_set_y[index * batch_size:(index + 1) * batch_size]
        })

    # create a list of all model parameters to be fit by gradient descent
    params = layer3.params + layer2.params + layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.
    updates = [(param_i, param_i - learning_rate * grad_i)
               for param_i, grad_i in zip(params, grads)]

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_y[index * batch_size:(index + 1) * batch_size]
        })
    # end-snippet-1

    ###############
    # TRAIN MODEL #
    ###############
    print '... training'
    # early-stopping parameters
    patience = 10000  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
    # found
    improvement_threshold = 0.995  # a relative improvement of this much is
    # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
    # go through this many
    # minibatche before checking the network
    # on the validation set; in this case we
    # check every epoch

    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.
    start_time = timeit.default_timer()

    epoch = 0
    done_looping = False

    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):

            iter = (epoch - 1) * n_train_batches + minibatch_index

            if iter % 100 == 0:
                print 'training @ iter = ', iter
            cost_ij = train_model(minibatch_index)

            if (iter + 1) % validation_frequency == 0:

                # compute zero-one loss on validation set
                validation_losses = [
                    validate_model(i) for i in xrange(n_valid_batches)
                ]
                this_validation_loss = numpy.mean(validation_losses)
                print('epoch %i, minibatch %i/%i, validation error %f %%' %
                      (epoch, minibatch_index + 1, n_train_batches,
                       this_validation_loss * 100.))

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:

                    #improve patience if loss improvement is good enough
                    if this_validation_loss < best_validation_loss *  \
                       improvement_threshold:
                        patience = max(patience, iter * patience_increase)

                    # save best validation score and iteration number
                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    # test it on the test set
                    test_losses = [
                        test_model(i) for i in xrange(n_test_batches)
                    ]
                    test_score = numpy.mean(test_losses)
                    print(('     epoch %i, minibatch %i/%i, test error of '
                           'best model %f %%') %
                          (epoch, minibatch_index + 1, n_train_batches,
                           test_score * 100.))

            if patience <= iter:
                done_looping = True
                break

    end_time = timeit.default_timer()
    print('Optimization complete.')
    print(
        'Best validation score of %f %% obtained at iteration %i, '
        'with test performance %f %%' %
        (best_validation_loss * 100., best_iter + 1, test_score * 100.))
    print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.))

    print "Dumping parameters to ../data/convnet.pkl"
    dir = os.getcwd()
    path = os.path.join(dir, "../data")
    os.chdir(path)

    with open("convnet.pkl", 'wb') as file:
        dict = {
            "layer0": layer0.param,
            "layer1": layer1.param,
            "layer2": layer2.param,
            "layer3": layer3.param
        }
        pickle.dump(dict, file, 2)
        os.chdir(dir)
Example #16
0
def get_reader(filename):
    arc = ZipTarReader.auto(filename)
    return BatchReader.BatchReader(arc, arc.namelist(), KaggleLabelClassifier)
Example #17
0
            y_k = []
            for angle in range(0, 360, 60):
                y_k.append(
                    self.eval_net(
                        self.rotate(
                            x[k * self.batch_size:(k + 1) * self.batch_size],
                            angle)))
            y_i.append(np.float32(y_k).mean(axis=0))
        y = np.vstack(y_i)
        return y


if __name__ == '__main__':

    rng = numpy.random.RandomState(42)
    br = BatchReader.inputs()
    br2 = BatchReader.inputs(testingData=True)

    X, Y = br.getNPArray(2)
    testX = br2.getNPArray(2)
    nkerns = [35, 70, 35]

    print X.shape, Y.shape
    print testX.shape

    n_examples = X.shape[0]
    fs = foldsize = n_examples / K_FOLD

    # k folds
    for k in range(K_FOLD):
        trainX = np.vstack([X[:k * fs], X[(k + 1) * fs:]])