Example #1
0
def solve(num,remaining):
    #base case.
    #Recheck that the number is valid
    if len(num) == 10 and len(remaining) == 0:
        valid = True
        primes = cf.generate_primes_less_than(20)
        #this loop makes sure that each candidate substring is divisible by 
        #the prime as defined by the problem (d2d3d4 % 2 == 0 and d3d4d5 %3 == 0, etc...)
        for j in range(1,7):
            substr = num[j:j+3]
            prime = primes[j-1]
            if int(substr) % prime != 0:
                valid = False
                break
        
        #if indeed we pass the check, return the number
        if valid:
            return int(num)
        else:
            return 0
    
    #as we flesh out the number, make sure it's valid before we move onto
    #further ones.
    sum = 0
    for i in range(len(remaining)):
        temp = num + remaining[i]
        length = len(temp)
        if temp[0] != '0' and (length < 4 or
                               length == 4 and int(temp[3]) % 2 == 0 or
        length == 5 and int(temp[2:5]) % 3 == 0 or
        length == 6 and int(temp[3:6]) % 5 == 0 or
        length == 7 and int(temp[4:7]) % 7 == 0 or
        length == 8 and int(temp[5:8]) % 11 == 0 or
        length == 9 and int(temp[6:9]) % 13 == 0 or
        length == 10 and int(temp[7:10]) % 17 == 0):
            sum += solve(temp, remaining[0:i] + remaining[i+1:len(remaining)])
            
    return sum
Example #2
0
"""
Created on 2013-01-23

@author: paymahn
"""
import CommonFunctions as cf
import itertools as it
import time

t = time.time()


primes = cf.generate_primes_less_than(10000)  # generate primes less than 10000
primes = set(x for x in primes if x > 1000)  # remove primes less than 1000 (we only have 4 digit primes now)

for i in primes:
    permutations = [
        cf.tuple_to_num(x) for x in it.permutations(str(i))
    ]  # get all the permutations of the digits of the current prime
    permutations = set(
        x for x in permutations if x in primes
    )  # remove duplicate permutations and non prime permutations
    triplets = [x for x in it.permutations(permutations, 3)]  # it's hard to explain this one succintly, use a debugger
    for x in triplets:  # test each triplet and print the triplet if it's valid
        sorted_triplet = sorted(x)
        if sorted_triplet[2] - sorted_triplet[1] == sorted_triplet[1] - sorted_triplet[0]:
            print sorted_triplet


print time.time() - t
Example #3
0
def replace(num, digit, locations):
    result = num
    for i in locations:
        result -= num % 10**(i+1)
        result += digit*10**i
        result += num % 10**i
            
    return result


t = time()


LIMIT = 1000000
primes = cf.generate_primes_less_than(LIMIT)
prime_set = set(primes)
valid_primes = [x for x in primes if x > 100109]


for p in primes:
    length = int(math.log10(p)) + 1
    for x in it.combinations(range(length),3): #not sure why the 3 works, but it does
        primes_created = []
        for r in range(10):
            new_num = replace(p,r,x) #replaces digits indicated by x with the digit r in the number p
            
            if new_num > 0 and int(math.log10(new_num)) + 1 == length and new_num in prime_set:
                primes_created.append(new_num)
        
        if len(primes_created) == 8 and p in primes_created:
Example #4
0
@author: paymahn
'''

'''
f**k this, it's not working. I'm gonna try something different

'''
import CommonFunctions as cf
import itertools as it
import time

t = time.time()


pandigitals = [cf.tuple_to_num(x) for x in it.permutations(range(10))]
primes= cf.generate_primes_less_than(20)

tally = 0
for i in pandigitals:
    i = str(i)
    if len(i) == 10:
        valid = True
        for j in range(1,7):
            substr = i[j:j+3]
            prime = primes[j-1]
            if int(substr) % prime != 0:
                valid = False
                break
        
        if valid:
            tally += int(i)
Example #5
0
@author: paymahn
'''

'''
Can't find the 11th prime

'''
import CommonFunctions as cf
import time
import math

t = time.time()


primes = cf.generate_primes_less_than(1000000)

#remove primes that have even numbers
#turn into set for quick lookups
usable_primes = set([x for x in primes if not cf.contains_even_digit(x)])


tally = 0
count = 0
for x in usable_primes:
    if x > 7 and count < 11:
        
        
        #test left trucation
        left = True
        temp = x
Example #6
0
'''
Created on Jan 18, 2013

@author: PaymahnMoghadasian
'''

# this was made better by implement the sieve of Erastothene in CommonFunctions.py

import CommonFunctions as cf

print sum(cf.generate_primes_less_than(2000000))
Example #7
0
'''
Created on 2013-01-22

@author: paymahn
'''

import itertools as it
import CommonFunctions as cf

pan9 = [int(''.join(map(str,x))) for x in it.permutations(range(1,8),7)]
pan9.sort(reverse=True)

primes = cf.generate_primes_less_than(int(7654321**0.5))

for i in pan9:
    if cf.is_prime(i, primes):
        print i
        break
    
print "finished"
Example #8
0
'''
Note that b must be prime and positive (I'm not sure if there's such a thing as a negative prime)

|a| must be bigger than b because primes can't be negative. If |a| < b and b is prime then f(1) is negative, which is not prime
EX: let f(n) = n*n + a*n + b
        f(1) = 1 + a + b
        If |a| < b then f(1) < 2


'''
import CommonFunctions as cf
import time

t = time.time()

values_of_b = cf.generate_primes_less_than(1000)
primes = set(cf.generate_n_primes(300))

best_a, best_b = None, None
best_n = 0

print time.time() - t
for b in values_of_b:
    for a in range(-b + 1, 10000):
        n = 0
        while n * n + a * n + b in primes:
            n += 1
        
        if n > best_n:
            best_n = n
            best_a = a
Example #9
0
'''
Created on 2013-01-21

@author: paymahn
'''
import CommonFunctions as cf
import math

primes = set(cf.generate_primes_less_than(1000000))
count = 0
for i in primes:
    #print "Testing prime", i
    len = int(math.log10(i) + 1)
    temp = i
    valid = True
    for j in range(len):
        temp = (temp % 10**(len-1)) * 10 + temp/10**(len-1)
        if temp not in primes:
            valid = False
            break
    
    if valid:
        print i
        count += 1
        
print count
Example #10
0
'''
Created on 2013-01-23

@author: paymahn
'''

import CommonFunctions as cf

MAX = 10000
primes = set(cf.generate_primes_less_than(MAX))
odd_composite = [x for x in range(1,MAX) if x%2==1 and x not in primes and x > 1]
squares = [x*x for x in range(1,MAX) if x*x <= MAX/2]

for i in odd_composite:
    goldbach = False
    for j in squares:
        if i - 2*j in primes and not goldbach:
            goldbach = True
            break
    
    if not goldbach:
        print i
        break