Example #1
0
    def __init__(self, DataSpectrum, Instrument, LibraryHA, LibraryLA,
                 parameters, deltaParameters):
        '''Initialize the comparison object.

        :param DataSpectrum: the spectrum that provides a wl grid + natural resolution
        :type DataSpectrum: :obj:`grid_tools.DataSpectrum`
        :param Instrument: the instrument object on which the DataSpectrum was acquired (ie, TRES, SPEX...)
        :type Instrument: :obj:`grid_tools.Instrument`
        :param LibraryHA: the path to the native resolution spectral library
        :type LibraryHA: string
        :param LibraryLA: the path to the approximate spectral library
        :type LibraryLA: string

        '''

        self.DataSpectrum = DataSpectrum
        self.Instrument = Instrument

        self.HDF5InterfaceHA = HDF5Interface(LibraryHA)
        self.HDF5InterfaceLA = HDF5Interface(LibraryLA)

        print("Bounds of the grids are")
        print("HA", self.HDF5InterfaceHA.bounds)
        print("LA", self.HDF5InterfaceLA.bounds)

        #If the DataSpectrum contains more than one order, we only take the first one. To get behavior with a
        # different order, you should only load that via the DataSpectrum(orders=[22]) flag.
        self.wl = self.DataSpectrum.wls[0]

        self.fullModelLA = Model(self.DataSpectrum,
                                 self.Instrument,
                                 self.HDF5InterfaceLA,
                                 stellar_tuple=("temp", "logg", "Z", "vsini",
                                                "vz", "logOmega"),
                                 cheb_tuple=("c1", "c2", "c3"),
                                 cov_tuple=("sigAmp", "logAmp", "l"),
                                 region_tuple=("loga", "mu", "sigma"))
        self.modelLA = self.fullModelLA.OrderModels[0]

        self.fullModelHA = ModelHA(self.DataSpectrum,
                                   self.Instrument,
                                   self.HDF5InterfaceHA,
                                   stellar_tuple=("temp", "logg", "Z", "vsini",
                                                  "vz", "logOmega"),
                                   cheb_tuple=("c1", "c2", "c3"),
                                   cov_tuple=("sigAmp", "logAmp", "l"),
                                   region_tuple=("loga", "mu", "sigma"))
        self.modelHA = self.fullModelHA.OrderModels[0]

        self.parameters = parameters
        self.deltaParameters = deltaParameters

        self.base = self.get_specHA(self.parameters)
        self.baseLA = self.get_specLA(self.parameters)
        self.approxResid = get_resid_spec(
            self.base, self.baseLA)  #modelHA - modelLA @ parameters
Example #2
0
    def setup_class(self):
        self.DataSpectrum = DataSpectrum.open(
            "../data/WASP14/WASP-14_2009-06-15_04h13m57s_cb.spec.flux",
            orders=np.array([22]))
        self.Instrument = TRES()
        self.HDF5Interface = HDF5Interface(
            "../libraries/PHOENIX_submaster.hdf5")

        stellar_Starting = {
            "temp": 6000,
            "logg": 4.05,
            "Z": -0.4,
            "vsini": 10.5,
            "vz": 15.5,
            "logOmega": -19.665
        }
        stellar_tuple = C.dictkeys_to_tuple(stellar_Starting)

        cheb_tuple = ("c1", "c2", "c3")
        cov_tuple = ("sigAmp", "logAmp", "l")
        region_tuple = ("h", "loga", "mu", "sigma")

        self.Model = Model(self.DataSpectrum,
                           self.Instrument,
                           self.HDF5Interface,
                           stellar_tuple=stellar_tuple,
                           cheb_tuple=cheb_tuple,
                           cov_tuple=cov_tuple,
                           region_tuple=region_tuple,
                           outdir="")
Example #3
0
 def setup_class(self):
     from StellarSpectra.grid_tools import HDF5Interface
     hdf5interface = HDF5Interface("../libraries/PHOENIX_submaster.hdf5")
     self.wl = hdf5interface.wl
     self.spec = hdf5interface.load_file({
         "temp": 6100,
         "logg": 4.5,
         "Z": 0.0,
         "alpha": 0.0
     })
Example #4
0
 def setup_class(self):
     from StellarSpectra.grid_tools import HDF5Interface, ModelInterpolator, TRES
     #libraries/PHOENIX_submaster.hd5 should have the following bounds
     #{"temp":(6000, 7000), "logg":(3.5,5.5), "Z":(-1.0,0.0), "alpha":(0.0,0.4)}
     myHDF5Interface = HDF5Interface("../libraries/PHOENIX_submaster.hdf5")
     myDataSpectrum = DataSpectrum.open(
         "/home/ian/Grad/Research/Disks/StellarSpectra/StellarSpectra/tests/WASP14/WASP-14_2009-06-15_04h13m57s_cb.spec.flux",
         orders=np.array([21, 22, 23]))
     self.DataSpectrum = myDataSpectrum
     myInterpolator = ModelInterpolator(myHDF5Interface, myDataSpectrum)
     myInstrument = TRES()
     self.model = ModelSpectrum(myInterpolator, myInstrument)
Example #5
0
import numpy as np
from StellarSpectra.model import Model
from StellarSpectra.spectrum import DataSpectrum
from StellarSpectra.grid_tools import TRES, HDF5Interface
from StellarSpectra import utils

myDataSpectrum = DataSpectrum.open("../../data/WASP14/WASP14-2009-06-14.hdf5",
                                   orders=np.array([21, 22, 23]))

myInstrument = TRES()

myHDF5Interface = HDF5Interface("../../libraries/PHOENIX_TRES_F.hdf5")

#Load a model using the JSON file
myModel = Model.from_json("WASP14_PHOENIX_model0_final.json", myDataSpectrum,
                          myInstrument, myHDF5Interface)

myOrderModel = myModel.OrderModels[1]
model_flux = myOrderModel.get_spectrum()

spec = myModel.get_data()
wl = spec.wls[1]
fl = spec.fls[1]

model_fl = myOrderModel.get_spectrum()
residuals = fl - model_fl

mask = spec.masks[1]
cov = myModel.OrderModels[1].get_Cov().todense()

np.save("PHOENIX_covariance_matrix.npy", cov)
Example #6
0
def main():
    #Use argparse to determine if we've specified a config file
    import argparse
    parser = argparse.ArgumentParser(
        prog="flot_model.py",
        description="Plot the model and residuals using flot.")
    parser.add_argument("json", help="*.json file describing the model.")
    parser.add_argument("params",
                        help="*.yaml file specifying run parameters.")
    # parser.add_argument("-o", "--output", help="*.html file for output")
    args = parser.parse_args()

    import json
    import yaml

    if args.json:  #
        #assert that we actually specified a *.json file
        if ".json" not in args.json:
            import sys
            sys.exit("Must specify a *.json file.")

    if args.params:  #
        #assert that we actually specified a *.yaml file
        if ".yaml" in args.params:
            yaml_file = args.params
            f = open(args.params)
            config = yaml.load(f)
            f.close()

        else:
            import sys
            sys.exit("Must specify a *.yaml file.")
            yaml_file = args.params

    from StellarSpectra.model import Model
    from StellarSpectra.spectrum import DataSpectrum
    from StellarSpectra.grid_tools import TRES, HDF5Interface

    #Figure out what the relative path is to base
    import StellarSpectra
    base = StellarSpectra.__file__[:-26]

    myDataSpectrum = DataSpectrum.open(base + config['data'],
                                       orders=config['orders'])
    myInstrument = TRES()
    myHDF5Interface = HDF5Interface(base + config['HDF5_path'])

    myModel = Model.from_json(args.json, myDataSpectrum, myInstrument,
                              myHDF5Interface)

    for model in myModel.OrderModels:

        #If an order has regions, read these out from model_final.json
        region_dict = model.get_regions_dict()
        print("Region dict", region_dict)
        #loop through these to determine the wavelength of each
        wl_regions = [value["mu"] for value in region_dict.values()]

        #Make vertical markings at the location of the wl_regions.

        #Get the data, sigmas, and mask
        wl, fl, sigma, mask = model.get_data()

        #Get the model flux
        flm = model.get_spectrum()

        #Get chebyshev
        cheb = model.get_Cheb()

        name = "Order {}".format(model.order)

        plot_data = order_json(wl, fl, sigma, mask, flm, cheb)
        plot_data.update({"wl_regions": wl_regions})
        print(plot_data['wl_regions'])

        render_template(base, plot_data)
import numpy as np
from StellarSpectra.model import Model
from StellarSpectra.spectrum import DataSpectrum
from StellarSpectra.grid_tools import SPEX, HDF5Interface
from StellarSpectra import utils

myDataSpectrum = DataSpectrum.open("../../data/Gl51/Gl51RA.hdf5", orders=np.array([0]))
myInstrument = SPEX()
myHDF5Interface = HDF5Interface("../../libraries/PHOENIX_SPEX_M.hdf5")

#Load a model using the JSON file
#Taken from:
# /home/ian/Grad/Research/Disks/StellarSpectra/output/Gl51/PHOENIX/RA/region/logg/4_8sig/
myModel = Model.from_json("Gl51_model0_final.json", myDataSpectrum, myInstrument, myHDF5Interface)

myOrderModel = myModel.OrderModels[0]
model_flux = myOrderModel.get_spectrum()

spec = myModel.get_data()
wl = spec.wls[0]
fl = spec.fls[0]

model_fl = myOrderModel.get_spectrum()
residuals = fl - model_fl

mask = spec.masks[0]
cov = myModel.OrderModels[0].get_Cov().todense()

np.save("Gl51_covariance_matrix.npy", cov)
import sys
sys.exit()
Example #8
0
def main():
    #Use argparse to determine if we've specified a config file
    import argparse
    parser = argparse.ArgumentParser(
        prog="plotly_model.py",
        description="Plot the model and residuals using plot.ly")
    parser.add_argument("json", help="*.json file describing the model.")
    parser.add_argument("params",
                        help="*.yaml file specifying run parameters.")
    # parser.add_argument("-o", "--output", help="*.html file for output")
    args = parser.parse_args()

    import json
    import yaml

    if args.json:  #
        #assert that we actually specified a *.json file
        if ".json" not in args.json:
            import sys
            sys.exit("Must specify a *.json file.")

    if args.params:  #
        #assert that we actually specified a *.yaml file
        if ".yaml" in args.params:
            yaml_file = args.params
            f = open(args.params)
            config = yaml.load(f)
            f.close()

        else:
            import sys
            sys.exit("Must specify a *.yaml file.")
            yaml_file = args.params

    from StellarSpectra.model import Model
    from StellarSpectra.spectrum import DataSpectrum
    from StellarSpectra.grid_tools import TRES, HDF5Interface

    #Figure out what the relative path is to base
    import StellarSpectra
    base = StellarSpectra.__file__[:-26]

    myDataSpectrum = DataSpectrum.open(base + config['data'],
                                       orders=config['orders'])
    myInstrument = TRES()
    myHDF5Interface = HDF5Interface(base + config['HDF5_path'])

    myModel = Model.from_json(args.json, myDataSpectrum, myInstrument,
                              myHDF5Interface)

    for model in myModel.OrderModels:

        #Get the data
        wl, fl = model.get_data()

        #Get the model flux
        flm = model.get_spectrum()

        #Get residuals
        residuals = model.get_residuals()

        name = "Order {}".format(model.order)

        url = plotly_order(name, wl, fl, flm, residuals)
        print(url)
Example #9
0
import numpy as np
from StellarSpectra.model import Model
from StellarSpectra.spectrum import DataSpectrum
from StellarSpectra.grid_tools import TRES, SPEX, HDF5Interface
from StellarSpectra import utils

myDataSpectrum = DataSpectrum.open("../../data/WASP14/WASP14-2009-06-14.hdf5",
                                   orders=np.array([21, 22, 23]))
myInstrument = TRES()
myHDF5Interface = HDF5Interface("../../libraries/Kurucz_TRES.hdf5")

#Load a model using the JSON file
#Taken from:
#/n/home07/iczekala/StellarSpectra/output/WASP14/Kurucz/21_22_23/logg/cov/2014-08-06/run18
myModel = Model.from_json("WASP14_Kurucz_logg_model_final.json",
                          myDataSpectrum, myInstrument, myHDF5Interface)

myOrderModel = myModel.OrderModels[1]
model_flux = myOrderModel.get_spectrum()

spec = myModel.get_data()
wl = spec.wls[1]
fl = spec.fls[1]

model_fl = myOrderModel.get_spectrum()
residuals = fl - model_fl

mask = spec.masks[1]
cov = myModel.OrderModels[1].get_Cov().todense()

draws = utils.random_draws(cov, num=50)
Example #10
0
from StellarSpectra.grid_tools import HDF5Interface, Interpolator, KPNO, TRES, MasterToFITSIndividual

myHDF5Interface = HDF5Interface(
    "/n/holyscratch/panstarrs/iczekala/master_grids/PHOENIX_master.hdf5")

myInterpolator = Interpolator(myHDF5Interface,
                              avg_hdr_keys=[
                                  "air", "PHXLUM", "PHXMXLEN", "PHXLOGG",
                                  "PHXDUST", "PHXM_H", "PHXREFF", "PHXXI_L",
                                  "PHXXI_M", "PHXXI_N", "PHXALPHA", "PHXMASS",
                                  "norm", "PHXVER", "PHXTEFF"
                              ])

outKPNO = "/n/home07/iczekala/StellarSpectra/libraries/willie/KPNO/"
outKPNOfnu = "/n/home07/iczekala/StellarSpectra/libraries/willie/KPNOfnu/"
outTRES = "/n/home07/iczekala/StellarSpectra/libraries/willie/TRES/"
outTRESfnu = "/n/home07/iczekala/StellarSpectra/libraries/willie/TRESfnu/"

params_hot = {"temp": 6000, "logg": 4.5, "Z": 0.0, "vsini": 8}
params_cool = {"temp": 4000, "logg": 4.5, "Z": 0.0, "vsini": 4}

KPNOcreator = MasterToFITSIndividual(interpolator=myInterpolator,
                                     instrument=KPNO())
KPNOcreator.process_spectrum(params_hot, out_unit="f_nu_log", out_dir=outKPNO)
KPNOcreator.process_spectrum(params_cool, out_unit="f_nu_log", out_dir=outKPNO)
KPNOcreator.process_spectrum(params_hot, out_unit="f_nu", out_dir=outKPNOfnu)
KPNOcreator.process_spectrum(params_cool, out_unit="f_nu", out_dir=outKPNOfnu)

TREScreator = MasterToFITSIndividual(interpolator=myInterpolator,
                                     instrument=TRES())
TREScreator.process_spectrum(params_hot, out_unit="f_nu_log", out_dir=outTRES)
Example #11
0
config = yaml.load(f)
f.close()

#Use the model_final.json to figure out how many orders there are
from StellarSpectra.model import Model
from StellarSpectra.spectrum import DataSpectrum
from StellarSpectra.grid_tools import TRES, HDF5Interface

#Figure out what the relative path is to base
import StellarSpectra
base = StellarSpectra.__file__[:-26]

myDataSpectrum = DataSpectrum.open(base + config['data'],
                                   orders=config['orders'])
myInstrument = TRES()
myHDF5Interface = HDF5Interface(base + config['HDF5_path'])

myModel = Model.from_json(args.run + "/model_final.json", myDataSpectrum,
                          myInstrument, myHDF5Interface)
orders = [orderModel.order for orderModel in myModel.OrderModels]

flot_plots = {22: "Hi"}

#If the Jinja templater is going to work, it needs a list of orders. It also needs a list of how many regions
# are in each order
# each order, there is dictionary
#of global

#Set the categories as the decomposition of the run directory, excluding
#output and the "run00" directory.
#For example, output/WASP14/Kurucz/22/run01 becomes categories="WASP14 Kurucz 22"
Example #12
0
if args.params:  #
    #assert that we actually specified a *.yaml file
    if ".yaml" in args.params:
        yaml_file = args.params
        f = open(args.params)
        config = yaml.load(f)
        f.close()

    else:
        import sys
        sys.exit("Must specify a *.yaml file.")
        yaml_file = args.params

myDataSpectrum = DataSpectrum.open(config['data_dir'], orders=config['orders'])
myInstrument = TRES()
myHDF5Interface = HDF5Interface(config['HDF5_path'])

stellar_Starting = config['stellar_params']
stellar_tuple = C.dictkeys_to_tuple(stellar_Starting)

cheb_Starting = config['cheb_params']
cheb_tuple = ("logc0", "c1", "c2", "c3")

cov_Starting = config['cov_params']
cov_tuple = C.dictkeys_to_cov_global_tuple(cov_Starting)

region_tuple = ("h", "loga", "mu", "sigma")
region_MH_cov = np.array([0.05, 0.04, 0.02, 0.02])**2 * np.identity(
    len(region_tuple))

myModel = Model.from_json(args.json, myDataSpectrum, myInstrument,
Example #13
0
from StellarSpectra.spectrum import DataSpectrum
from StellarSpectra.grid_tools import TRES, HDF5Interface
import StellarSpectra.constants as C
import numpy as np
import sys
from emcee.utils import MPIPool

myDataSpectrum = DataSpectrum.open("../data/WASP14/WASP-14_2009-06-15_04h13m57s_cb.spec.flux", orders=np.array([22]))
myInstrument = TRES()
myHDF5Interface = HDF5Interface("../libraries/PHOENIX_submaster.hdf5")

stellar_Starting = {"temp":(6000, 6100), "logg":(3.9, 4.2), "Z":(-0.6, -0.3), "vsini":(4, 6), "vz":(15.0, 16.0), "logOmega":(-19.665, -19.664)}

stellar_tuple = C.dictkeys_to_tuple(stellar_Starting)

#cheb_Starting = {"c1": (-.02, -0.015), "c2": (-.0195, -0.0165), "c3": (-.005, .0)}
cheb_Starting = {"logc0": (-0.02, 0.02), "c1": (-.02, 0.02), "c2": (-0.02, 0.02), "c3": (-.02, 0.02)}
cov_Starting = {"sigAmp":(0.9, 1.1), "logAmp":(-14.4, -14), "l":(0.1, 0.25)}
cov_tuple = C.dictkeys_to_covtuple(cov_Starting)

myModel = Model(myDataSpectrum, myInstrument, myHDF5Interface, stellar_tuple=stellar_tuple, cov_tuple=cov_tuple)




def eval0():
    myModel.evaluate()

def eval1():
    myModel.evaluate()