def __init__(self, DataSpectrum, Instrument, LibraryHA, LibraryLA, parameters, deltaParameters): '''Initialize the comparison object. :param DataSpectrum: the spectrum that provides a wl grid + natural resolution :type DataSpectrum: :obj:`grid_tools.DataSpectrum` :param Instrument: the instrument object on which the DataSpectrum was acquired (ie, TRES, SPEX...) :type Instrument: :obj:`grid_tools.Instrument` :param LibraryHA: the path to the native resolution spectral library :type LibraryHA: string :param LibraryLA: the path to the approximate spectral library :type LibraryLA: string ''' self.DataSpectrum = DataSpectrum self.Instrument = Instrument self.HDF5InterfaceHA = HDF5Interface(LibraryHA) self.HDF5InterfaceLA = HDF5Interface(LibraryLA) print("Bounds of the grids are") print("HA", self.HDF5InterfaceHA.bounds) print("LA", self.HDF5InterfaceLA.bounds) #If the DataSpectrum contains more than one order, we only take the first one. To get behavior with a # different order, you should only load that via the DataSpectrum(orders=[22]) flag. self.wl = self.DataSpectrum.wls[0] self.fullModelLA = Model(self.DataSpectrum, self.Instrument, self.HDF5InterfaceLA, stellar_tuple=("temp", "logg", "Z", "vsini", "vz", "logOmega"), cheb_tuple=("c1", "c2", "c3"), cov_tuple=("sigAmp", "logAmp", "l"), region_tuple=("loga", "mu", "sigma")) self.modelLA = self.fullModelLA.OrderModels[0] self.fullModelHA = ModelHA(self.DataSpectrum, self.Instrument, self.HDF5InterfaceHA, stellar_tuple=("temp", "logg", "Z", "vsini", "vz", "logOmega"), cheb_tuple=("c1", "c2", "c3"), cov_tuple=("sigAmp", "logAmp", "l"), region_tuple=("loga", "mu", "sigma")) self.modelHA = self.fullModelHA.OrderModels[0] self.parameters = parameters self.deltaParameters = deltaParameters self.base = self.get_specHA(self.parameters) self.baseLA = self.get_specLA(self.parameters) self.approxResid = get_resid_spec( self.base, self.baseLA) #modelHA - modelLA @ parameters
def setup_class(self): self.DataSpectrum = DataSpectrum.open( "../data/WASP14/WASP-14_2009-06-15_04h13m57s_cb.spec.flux", orders=np.array([22])) self.Instrument = TRES() self.HDF5Interface = HDF5Interface( "../libraries/PHOENIX_submaster.hdf5") stellar_Starting = { "temp": 6000, "logg": 4.05, "Z": -0.4, "vsini": 10.5, "vz": 15.5, "logOmega": -19.665 } stellar_tuple = C.dictkeys_to_tuple(stellar_Starting) cheb_tuple = ("c1", "c2", "c3") cov_tuple = ("sigAmp", "logAmp", "l") region_tuple = ("h", "loga", "mu", "sigma") self.Model = Model(self.DataSpectrum, self.Instrument, self.HDF5Interface, stellar_tuple=stellar_tuple, cheb_tuple=cheb_tuple, cov_tuple=cov_tuple, region_tuple=region_tuple, outdir="")
def setup_class(self): from StellarSpectra.grid_tools import HDF5Interface hdf5interface = HDF5Interface("../libraries/PHOENIX_submaster.hdf5") self.wl = hdf5interface.wl self.spec = hdf5interface.load_file({ "temp": 6100, "logg": 4.5, "Z": 0.0, "alpha": 0.0 })
def setup_class(self): from StellarSpectra.grid_tools import HDF5Interface, ModelInterpolator, TRES #libraries/PHOENIX_submaster.hd5 should have the following bounds #{"temp":(6000, 7000), "logg":(3.5,5.5), "Z":(-1.0,0.0), "alpha":(0.0,0.4)} myHDF5Interface = HDF5Interface("../libraries/PHOENIX_submaster.hdf5") myDataSpectrum = DataSpectrum.open( "/home/ian/Grad/Research/Disks/StellarSpectra/StellarSpectra/tests/WASP14/WASP-14_2009-06-15_04h13m57s_cb.spec.flux", orders=np.array([21, 22, 23])) self.DataSpectrum = myDataSpectrum myInterpolator = ModelInterpolator(myHDF5Interface, myDataSpectrum) myInstrument = TRES() self.model = ModelSpectrum(myInterpolator, myInstrument)
import numpy as np from StellarSpectra.model import Model from StellarSpectra.spectrum import DataSpectrum from StellarSpectra.grid_tools import TRES, HDF5Interface from StellarSpectra import utils myDataSpectrum = DataSpectrum.open("../../data/WASP14/WASP14-2009-06-14.hdf5", orders=np.array([21, 22, 23])) myInstrument = TRES() myHDF5Interface = HDF5Interface("../../libraries/PHOENIX_TRES_F.hdf5") #Load a model using the JSON file myModel = Model.from_json("WASP14_PHOENIX_model0_final.json", myDataSpectrum, myInstrument, myHDF5Interface) myOrderModel = myModel.OrderModels[1] model_flux = myOrderModel.get_spectrum() spec = myModel.get_data() wl = spec.wls[1] fl = spec.fls[1] model_fl = myOrderModel.get_spectrum() residuals = fl - model_fl mask = spec.masks[1] cov = myModel.OrderModels[1].get_Cov().todense() np.save("PHOENIX_covariance_matrix.npy", cov)
def main(): #Use argparse to determine if we've specified a config file import argparse parser = argparse.ArgumentParser( prog="flot_model.py", description="Plot the model and residuals using flot.") parser.add_argument("json", help="*.json file describing the model.") parser.add_argument("params", help="*.yaml file specifying run parameters.") # parser.add_argument("-o", "--output", help="*.html file for output") args = parser.parse_args() import json import yaml if args.json: # #assert that we actually specified a *.json file if ".json" not in args.json: import sys sys.exit("Must specify a *.json file.") if args.params: # #assert that we actually specified a *.yaml file if ".yaml" in args.params: yaml_file = args.params f = open(args.params) config = yaml.load(f) f.close() else: import sys sys.exit("Must specify a *.yaml file.") yaml_file = args.params from StellarSpectra.model import Model from StellarSpectra.spectrum import DataSpectrum from StellarSpectra.grid_tools import TRES, HDF5Interface #Figure out what the relative path is to base import StellarSpectra base = StellarSpectra.__file__[:-26] myDataSpectrum = DataSpectrum.open(base + config['data'], orders=config['orders']) myInstrument = TRES() myHDF5Interface = HDF5Interface(base + config['HDF5_path']) myModel = Model.from_json(args.json, myDataSpectrum, myInstrument, myHDF5Interface) for model in myModel.OrderModels: #If an order has regions, read these out from model_final.json region_dict = model.get_regions_dict() print("Region dict", region_dict) #loop through these to determine the wavelength of each wl_regions = [value["mu"] for value in region_dict.values()] #Make vertical markings at the location of the wl_regions. #Get the data, sigmas, and mask wl, fl, sigma, mask = model.get_data() #Get the model flux flm = model.get_spectrum() #Get chebyshev cheb = model.get_Cheb() name = "Order {}".format(model.order) plot_data = order_json(wl, fl, sigma, mask, flm, cheb) plot_data.update({"wl_regions": wl_regions}) print(plot_data['wl_regions']) render_template(base, plot_data)
import numpy as np from StellarSpectra.model import Model from StellarSpectra.spectrum import DataSpectrum from StellarSpectra.grid_tools import SPEX, HDF5Interface from StellarSpectra import utils myDataSpectrum = DataSpectrum.open("../../data/Gl51/Gl51RA.hdf5", orders=np.array([0])) myInstrument = SPEX() myHDF5Interface = HDF5Interface("../../libraries/PHOENIX_SPEX_M.hdf5") #Load a model using the JSON file #Taken from: # /home/ian/Grad/Research/Disks/StellarSpectra/output/Gl51/PHOENIX/RA/region/logg/4_8sig/ myModel = Model.from_json("Gl51_model0_final.json", myDataSpectrum, myInstrument, myHDF5Interface) myOrderModel = myModel.OrderModels[0] model_flux = myOrderModel.get_spectrum() spec = myModel.get_data() wl = spec.wls[0] fl = spec.fls[0] model_fl = myOrderModel.get_spectrum() residuals = fl - model_fl mask = spec.masks[0] cov = myModel.OrderModels[0].get_Cov().todense() np.save("Gl51_covariance_matrix.npy", cov) import sys sys.exit()
def main(): #Use argparse to determine if we've specified a config file import argparse parser = argparse.ArgumentParser( prog="plotly_model.py", description="Plot the model and residuals using plot.ly") parser.add_argument("json", help="*.json file describing the model.") parser.add_argument("params", help="*.yaml file specifying run parameters.") # parser.add_argument("-o", "--output", help="*.html file for output") args = parser.parse_args() import json import yaml if args.json: # #assert that we actually specified a *.json file if ".json" not in args.json: import sys sys.exit("Must specify a *.json file.") if args.params: # #assert that we actually specified a *.yaml file if ".yaml" in args.params: yaml_file = args.params f = open(args.params) config = yaml.load(f) f.close() else: import sys sys.exit("Must specify a *.yaml file.") yaml_file = args.params from StellarSpectra.model import Model from StellarSpectra.spectrum import DataSpectrum from StellarSpectra.grid_tools import TRES, HDF5Interface #Figure out what the relative path is to base import StellarSpectra base = StellarSpectra.__file__[:-26] myDataSpectrum = DataSpectrum.open(base + config['data'], orders=config['orders']) myInstrument = TRES() myHDF5Interface = HDF5Interface(base + config['HDF5_path']) myModel = Model.from_json(args.json, myDataSpectrum, myInstrument, myHDF5Interface) for model in myModel.OrderModels: #Get the data wl, fl = model.get_data() #Get the model flux flm = model.get_spectrum() #Get residuals residuals = model.get_residuals() name = "Order {}".format(model.order) url = plotly_order(name, wl, fl, flm, residuals) print(url)
import numpy as np from StellarSpectra.model import Model from StellarSpectra.spectrum import DataSpectrum from StellarSpectra.grid_tools import TRES, SPEX, HDF5Interface from StellarSpectra import utils myDataSpectrum = DataSpectrum.open("../../data/WASP14/WASP14-2009-06-14.hdf5", orders=np.array([21, 22, 23])) myInstrument = TRES() myHDF5Interface = HDF5Interface("../../libraries/Kurucz_TRES.hdf5") #Load a model using the JSON file #Taken from: #/n/home07/iczekala/StellarSpectra/output/WASP14/Kurucz/21_22_23/logg/cov/2014-08-06/run18 myModel = Model.from_json("WASP14_Kurucz_logg_model_final.json", myDataSpectrum, myInstrument, myHDF5Interface) myOrderModel = myModel.OrderModels[1] model_flux = myOrderModel.get_spectrum() spec = myModel.get_data() wl = spec.wls[1] fl = spec.fls[1] model_fl = myOrderModel.get_spectrum() residuals = fl - model_fl mask = spec.masks[1] cov = myModel.OrderModels[1].get_Cov().todense() draws = utils.random_draws(cov, num=50)
from StellarSpectra.grid_tools import HDF5Interface, Interpolator, KPNO, TRES, MasterToFITSIndividual myHDF5Interface = HDF5Interface( "/n/holyscratch/panstarrs/iczekala/master_grids/PHOENIX_master.hdf5") myInterpolator = Interpolator(myHDF5Interface, avg_hdr_keys=[ "air", "PHXLUM", "PHXMXLEN", "PHXLOGG", "PHXDUST", "PHXM_H", "PHXREFF", "PHXXI_L", "PHXXI_M", "PHXXI_N", "PHXALPHA", "PHXMASS", "norm", "PHXVER", "PHXTEFF" ]) outKPNO = "/n/home07/iczekala/StellarSpectra/libraries/willie/KPNO/" outKPNOfnu = "/n/home07/iczekala/StellarSpectra/libraries/willie/KPNOfnu/" outTRES = "/n/home07/iczekala/StellarSpectra/libraries/willie/TRES/" outTRESfnu = "/n/home07/iczekala/StellarSpectra/libraries/willie/TRESfnu/" params_hot = {"temp": 6000, "logg": 4.5, "Z": 0.0, "vsini": 8} params_cool = {"temp": 4000, "logg": 4.5, "Z": 0.0, "vsini": 4} KPNOcreator = MasterToFITSIndividual(interpolator=myInterpolator, instrument=KPNO()) KPNOcreator.process_spectrum(params_hot, out_unit="f_nu_log", out_dir=outKPNO) KPNOcreator.process_spectrum(params_cool, out_unit="f_nu_log", out_dir=outKPNO) KPNOcreator.process_spectrum(params_hot, out_unit="f_nu", out_dir=outKPNOfnu) KPNOcreator.process_spectrum(params_cool, out_unit="f_nu", out_dir=outKPNOfnu) TREScreator = MasterToFITSIndividual(interpolator=myInterpolator, instrument=TRES()) TREScreator.process_spectrum(params_hot, out_unit="f_nu_log", out_dir=outTRES)
config = yaml.load(f) f.close() #Use the model_final.json to figure out how many orders there are from StellarSpectra.model import Model from StellarSpectra.spectrum import DataSpectrum from StellarSpectra.grid_tools import TRES, HDF5Interface #Figure out what the relative path is to base import StellarSpectra base = StellarSpectra.__file__[:-26] myDataSpectrum = DataSpectrum.open(base + config['data'], orders=config['orders']) myInstrument = TRES() myHDF5Interface = HDF5Interface(base + config['HDF5_path']) myModel = Model.from_json(args.run + "/model_final.json", myDataSpectrum, myInstrument, myHDF5Interface) orders = [orderModel.order for orderModel in myModel.OrderModels] flot_plots = {22: "Hi"} #If the Jinja templater is going to work, it needs a list of orders. It also needs a list of how many regions # are in each order # each order, there is dictionary #of global #Set the categories as the decomposition of the run directory, excluding #output and the "run00" directory. #For example, output/WASP14/Kurucz/22/run01 becomes categories="WASP14 Kurucz 22"
if args.params: # #assert that we actually specified a *.yaml file if ".yaml" in args.params: yaml_file = args.params f = open(args.params) config = yaml.load(f) f.close() else: import sys sys.exit("Must specify a *.yaml file.") yaml_file = args.params myDataSpectrum = DataSpectrum.open(config['data_dir'], orders=config['orders']) myInstrument = TRES() myHDF5Interface = HDF5Interface(config['HDF5_path']) stellar_Starting = config['stellar_params'] stellar_tuple = C.dictkeys_to_tuple(stellar_Starting) cheb_Starting = config['cheb_params'] cheb_tuple = ("logc0", "c1", "c2", "c3") cov_Starting = config['cov_params'] cov_tuple = C.dictkeys_to_cov_global_tuple(cov_Starting) region_tuple = ("h", "loga", "mu", "sigma") region_MH_cov = np.array([0.05, 0.04, 0.02, 0.02])**2 * np.identity( len(region_tuple)) myModel = Model.from_json(args.json, myDataSpectrum, myInstrument,
from StellarSpectra.spectrum import DataSpectrum from StellarSpectra.grid_tools import TRES, HDF5Interface import StellarSpectra.constants as C import numpy as np import sys from emcee.utils import MPIPool myDataSpectrum = DataSpectrum.open("../data/WASP14/WASP-14_2009-06-15_04h13m57s_cb.spec.flux", orders=np.array([22])) myInstrument = TRES() myHDF5Interface = HDF5Interface("../libraries/PHOENIX_submaster.hdf5") stellar_Starting = {"temp":(6000, 6100), "logg":(3.9, 4.2), "Z":(-0.6, -0.3), "vsini":(4, 6), "vz":(15.0, 16.0), "logOmega":(-19.665, -19.664)} stellar_tuple = C.dictkeys_to_tuple(stellar_Starting) #cheb_Starting = {"c1": (-.02, -0.015), "c2": (-.0195, -0.0165), "c3": (-.005, .0)} cheb_Starting = {"logc0": (-0.02, 0.02), "c1": (-.02, 0.02), "c2": (-0.02, 0.02), "c3": (-.02, 0.02)} cov_Starting = {"sigAmp":(0.9, 1.1), "logAmp":(-14.4, -14), "l":(0.1, 0.25)} cov_tuple = C.dictkeys_to_covtuple(cov_Starting) myModel = Model(myDataSpectrum, myInstrument, myHDF5Interface, stellar_tuple=stellar_tuple, cov_tuple=cov_tuple) def eval0(): myModel.evaluate() def eval1(): myModel.evaluate()