def insert_dataset(files): """ Function for inserting a whole dataset in the database :param files: dict with FileStorage instances, holding datasets' files :return: (True, None) | (False, str) - string instance is the error message """ # parameters required for basic data such as which dataset to be improted, what time formats to be used, etc. BASE_PARAMS = ['Date', 'Time'] # parameters required for getting specific columns from given datasets, etc. for Temperature get tempC column DATASET_PARAMS = ['weatherFormat', 'pollutantFormat'] dataset_metadata = json.load(files['metadata']) if not isinstance(dataset_metadata, dict): return False, Errors.WRONG_INSTANCE.value are_params_missing = Helpers.are_params_missing( dataset_metadata, BASE_PARAMS + DATASET_PARAMS) if are_params_missing: return False, Errors.MISSING_PARAM.value for x in DATASET_PARAMS: if not isinstance(dataset_metadata[x], dict): return False, Errors.WRONG_INSTANCE.value for key in files: dataset_metadata[key + 'Datasets'] = files[key] # Combine multiple datasets and get result main_transformer = MainTransformer(config=dataset_metadata) main_transformer.add_transformer(Transformers.WEATHER_TRANSFORMER) main_transformer.add_transformer(Transformers.POLLUTANT_TRANSFORMER) main_transformer.transform() dataset = main_transformer.get_dataset() result, err = DBManager.insert_dataset(dataset, dataset_metadata) return result, err
import pandas import random import numpy as np import json from airpyllution import MainTransformer from airpyllution import Transformers from airpyllution import DBManager with open('configTwo.json') as file: dataset_one = json.load(file) with open('configOne.json') as file: dataset_two = json.load(file) data_transformer = MainTransformer(config=dataset_one) data_transformer.add_transformer(Transformers.WEATHER_TRANSFORMER) data_transformer.add_transformer(Transformers.POLLUTANT_TRANSFORMER) data_transformer.transform() dataset_centre = data_transformer.get_dataset() data_transformer = MainTransformer(config=dataset_two) data_transformer.add_transformer(Transformers.WEATHER_TRANSFORMER) data_transformer.add_transformer(Transformers.POLLUTANT_TRANSFORMER) data_transformer.transform() dataset_a33 = data_transformer.get_dataset() length_centre = dataset_centre.shape[0] length_a33 = dataset_a33.shape[0] dataset_centre['Longitude'] = -1.463484
def get_single_instance_dataset(body, stats=None, prev=None): """ Function for generating a single instance dataset for CNN :param body: dict - parameters from request :param stats: dict - stats for dataset normalization on which model was trained :param prev: int - number of previous records to be generated :return: DataFrame with predictions """ if not isinstance(body, dict): return None if 'date_time' not in body or not isinstance(body['date_time'], str): return None if 'longitude' not in body or not isinstance(body['longitude'], float): return None if 'latitude' not in body or not isinstance(body['latitude'], float): return None df_schema = { 'DateTime': [body['date_time']], 'Longitude': body['longitude'], 'Latitude': body['latitude'], 'Pollutant': None } instance_object = { 'DateTime': body['date_time'], 'Longitude': body['longitude'], 'Latitude': body['latitude'], 'Pollutant': None } data_keys = list() if 'data' in body and 'weather' in body['data']: for key in body['data']['weather'].keys(): df_schema[key] = [body['data']['weather'][key]] instance_object[key] = body['data']['weather'][key] if isinstance(prev, int): ready_data = None DatasetsApi.generate_previous_records(df_schema, prev, ready_data) dataset = pandas.DataFrame(df_schema) automatic_normalization = not isinstance( stats, dict) # if stats parameter is given dataset.set_index(keys='DateTime', inplace=True) MainTransformer.periodic_f(dataset) X_predict, _, _, _, _ = MainTransformer.get_training_and_test_set( dataset, 'Pollutant', 'Uncertainty', size=1, normalize=automatic_normalization) if not automatic_normalization: MainTransformer.normalize(X_predict, stats=stats, inplace=True) return X_predict
def get_dataset(body, use_dataframe=True): """ Function for getting a dataset from database :param body: dict - requires several parameters: * type - of ML model (CNN, FullGP, etc.), * range - dict with start and end datetime strings in format Day-Month-Year H:M (24H format) * locations - list with lists of locations - list of location is a list with longitude and latitude, e.g. [longitude, latitude] * pollutant - name of the pollutant, e.g. PM10, PM2.5 * data - dict with additional data such as weather data (data['weather'] is another dict) :param use_dataframe: bool - whether the returned dataset is a dataframe or a list :return: DataFrame | List | None """ if not isinstance(body, dict): return None if 'range' not in body or 'locations' not in body or 'pollutant' not in body: return None if body['range'] is None or body['locations'] is None or body[ 'pollutant'] is None: return None # if not isinstance('range', dict): # return None # # if not isinstance(body['locations'], list): # return None # else: # result = list(filter(lambda c: not isinstance(c, list) or len(c) != 2, body['locations'])) # if len(result) != 0 and len(body['locations']) != 0: # return None # Params required for the DBManager, acts as a config of a given dataset config_params = { "Date": DatasetsApi.DATE_TIME_FORMAT.split(' ')[0], "Time": DatasetsApi.DATE_TIME_FORMAT.split(' ')[1], "pollutant": { "Pollutant": None }, 'weather': {} } start_date = None end_date = None uncertainty = False if 'start' in body['range']: start_date = datetime.datetime.strptime( body['range']['start'], DatasetsApi.DATE_TIME_FORMAT) if 'end' in body['range']: end_date = datetime.datetime.strptime(body['range']['end'], DatasetsApi.DATE_TIME_FORMAT) if 'uncertainty' in body: uncertainty = True location_coordinates = [] if isinstance(body['locations'], list): location_coordinates = list( map(lambda x: (x[0], x[1]), body['locations'])) if isinstance(body['pollutant'], str): config_params['pollutant']['Pollutant'] = body['pollutant'] if 'data' in body and isinstance(body['data'], dict): if 'weather' in body['data'] and isinstance( body['data']['weather'], dict): config_params['weather'] = body['data']['weather'] datasets = [] for coordinates_pair in location_coordinates: dataset, err = DBManager.get_dataset(datetime_from=start_date, datetime_to=end_date, longitude=coordinates_pair[0], latitude=coordinates_pair[1], config=config_params, use_dataframe=use_dataframe, uncertainty=uncertainty) dataset_size = len( dataset.index) if use_dataframe else len(dataset) if err is None and dataset_size != 0: datasets.append(dataset) if len(datasets) == 0: # TODO - IT IS VERY IMPORTANT TO CHANGE ALL CONDITIONS TO CHECK IF df.shape[0] == 0 IN THE API return pandas.DataFrame() if use_dataframe else [] if use_dataframe: complete_dataset = pandas.concat(datasets) MainTransformer.periodic_f(complete_dataset) else: complete_dataset = [] for x in datasets: complete_dataset.extend(x) return complete_dataset
def make_predictions(body, overwrite=False): """ Function for making predictions over a time range and locations by a given model :param body: :param overwrite: :return: bool, list - boolean whether it is successful and list with predictions and uncertanties """ dataset = DatasetsApi.get_dataset(body, use_dataframe=True) if dataset is None: return False, [] # get dataset with empty pollutant values incomplete_dataset = dataset if overwrite else dataset[ dataset['Pollutant'].isnull()] # split the dataset, do not normalize until means and stds are taken from the model X_predict, y_predict, _, _, stats = MainTransformer.get_training_and_test_set( incomplete_dataset, 'Pollutant', 'Uncertainty', size=1, normalize=False) model, model_record, err = ModelApi.get_model_by_name(body['name']) predictions = [] print(err) if err is None: training_dataset_stats = {} print('Verifying features...') if X_predict is None or X_predict.shape[1] != model.n_features: print('Wrong number of features') print(X_predict.shape[1] - 1) print(model.n_features) return False, [] print('Checking model stats...') if 'dataset_stats' in model.stats: training_dataset_stats = model.stats['dataset_stats'] feature_names = set(training_dataset_stats.keys()) dataset_features = set(X_predict) dataset_features.discard('DateTime') print('Checking feature names...') if feature_names != dataset_features: return False, [] print('Normalizing...') MainTransformer.normalize(X_predict, stats=training_dataset_stats, inplace=True) else: return False, [] print('Preidicting...') predictions = model.predict(X_predict, uncertainty=True) MainTransformer.unnormalize(X_predict, training_dataset_stats, inplace=True) MainTransformer.remove_periodic_f(X_predict) X_predict.loc[:, 'Pollutant'] = Series([x[0] for x in predictions], index=X_predict.index) X_predict.loc[:, 'Uncertainty'] = Series([x[1] for x in predictions], index=X_predict.index) # add predictions to the DB print('Done. Adding to database...') optional_data_keyset = set(body['data'].keys()) dataframe_optional_data = set(X_predict.keys()).difference( ModelApi.REQUIRED_FIELDS) keys_with_data_to_be_added = optional_data_keyset.intersection( dataframe_optional_data) results = [] for index, row in X_predict.iterrows(): if row['Pollutant'] is not None and math.isnan( row['Pollutant']): continue input_instance = { 'date_time': index, 'longitude': row['Longitude'], 'latitude': row['Latitude'], 'pollutant': body['pollutant'], 'pollution_value': row['Pollutant'], 'uncertainty': row['Uncertainty'], 'data': {} } print(body['pollutant']) print(row['Pollutant']) for key in keys_with_data_to_be_added: input_instance['data'][key] = row[key] result = DatasetsApi.insert_single_prediction(input_instance) results.append(result) predictions = ModelApi.__predictions_to_primitive_float( predictions) print('failed following: ') print(list(filter(lambda x: not x[0], results))) return True, predictions return False, predictions # in case that model does not exist
def train_model(model_name, body): """ Function for further training a model provided that the model already exists in the DB :param model_name: str - name of the existing model :param body: dict - body of the request :return: (True, None) | (False, str) | (False, list) """ print('Getting dataset...') model, model_record, err = ModelApi.get_model_by_name(model_name) if model is None: return False, err dataset = DatasetsApi.get_dataset(body, use_dataframe=True) if dataset is None: return False, Errors.NO_DATA.value complete_dataset = dataset[dataset['Pollutant'].notnull()] if 'n_instances_trained' in model.stats and 'dataset_stats' in model.stats: updated_stats, new_stats = MainTransformer.normalize_with_old_stats( model.stats['n_instances_trained'], model.stats['dataset_stats'], complete_dataset) MainTransformer.normalize(complete_dataset, stats=updated_stats, inplace=True) else: return False, [] stats = new_stats X_train, y_train, _, _, _ = MainTransformer.get_training_and_test_set( complete_dataset, 'Pollutant', 'Uncertainty', size=1, normalize=False) training_dataset_stats = {} print('Verifying dataset...') if 'dataset_stats' in model.stats: training_dataset_stats = model.stats['dataset_stats'] feature_names = set(training_dataset_stats.keys()) dataset_features = set(X_train) dataset_features.discard('DateTime') print('Verifying dataset features') if feature_names != dataset_features: print('feature names', feature_names, training_dataset_stats, training_dataset_stats.keys()) print('dataset features', dataset_features) if feature_names.intersection( dataset_features) == feature_names: print('Dataset is in the expected shape') print('difference') difference = dataset_features.difference(feature_names) print(difference) MainTransformer.remove_features(X_train, difference) else: print(feature_names) print(dataset_features) return False, [] else: return False, [] print('Starting to train model...') model.train(X_train, y_train, stats=stats) model_params, extra_params = model.model_to_json() result = DBManager.upsert_model(model_name, model_record.type, model_record.resource, model_params=model_params, extra_params=extra_params) print(result) return result
def create_model(name, body): """ Function for creating a non-existing model and training it with a given dataset This function should happen in the background to prevent overhead to Flask :param name: unique name of the model :param body: dict with following data: * type - type of model (CNN, FullGP, etc.) * range - dict with start and end fields, each storing datetime in DATE_TIME_FORMAT * locations - list of lists, nested list should have two entries 0 - longitude, 1 - latitude * pollutant - name of the polllutant PM10, PM2.5 * data - dict object with additional data that would be stored as JSONB data, it could have keys such as weather :return: bool: whether model was created """ if body is None: return False, Errors.MISSING_BODY.value print('Getting dataset...') dataset = DatasetsApi.get_dataset(body, use_dataframe=True) print(dataset) if dataset is None: return False, Errors.NO_DATA.value model = None complete_dataset = dataset[dataset['Pollutant'].notnull()] X_train, y_train, _, _, stats = MainTransformer.get_training_and_test_set( complete_dataset, 'Pollutant', 'Uncertainty', size=1, normalize=True) if 'type' not in body: return False, Errors.NO_MODEL_TYPE_GIVEN.value if body['type'] == 'CNN': model = ConvolutionalNeuralNetwork() model.train(X_train, y_train, stats=stats) resource = 'keras' model_params, extra_params = model.model_to_json() result = DBManager.upsert_model(name, body['type'], resource, model_params=model_params, extra_params=extra_params) return True, None elif body['type'] == 'FullGP': model = GaussianProcesses() model.train(X_train, y_train, stats=stats) resource = 'GPy' model_params, extra_params = model.model_to_json() result = DBManager.upsert_model(name, body['type'], resource, model_params=model_params, extra_params=extra_params) return True, None elif body['type'] == 'SparseGP': model = SparseGaussianProcesses() model.train(X_train, y_train, stats=stats) resource = 'GPy' model_params, extra_params = model.model_to_json() result = DBManager.upsert_model(name, body['type'], resource, model_params=model_params, extra_params=extra_params) return True, None return False, Errors.NO_SUCH_MODEL_TYPE.value
def make_single_prediction(body): """ Function for making predictions over a time range and locations by a given model :param body: :return: bool, list - boolean whether it is successful and list with predictions and uncertanties """ if not isinstance(body, dict): return False, [] if 'name' not in body: return False, [] if 'pollutant' not in body: return False, [] model, model_record, err = ModelApi.get_model_by_name(body['name']) predictions = [] if err is None: prev = None if isinstance(model, ConvolutionalNeuralNetwork): prev = model.seq_length training_dataset_stats = {} if 'dataset_stats' in model.stats: training_dataset_stats = model.stats['dataset_stats'] X_predict = DatasetsApi.get_single_instance_dataset( body, stats=training_dataset_stats, prev=prev) if X_predict is None: return False, [] feature_names = set(training_dataset_stats.keys()) dataset_features = set(X_predict) dataset_features.discard('DateTime') if feature_names != dataset_features: print(feature_names) print(dataset_features) return False, [] else: return False, [] predictions = model.predict(X_predict, uncertainty=True) MainTransformer.unnormalize(X_predict, training_dataset_stats, inplace=True) MainTransformer.remove_periodic_f(X_predict) X_predict.loc[:, 'Pollutant'] = Series([x[0] for x in predictions], index=X_predict.index) X_predict.loc[:, 'Uncertainty'] = Series([x[1] for x in predictions], index=X_predict.index) # add predictions to the DB keys_with_data_to_be_added = {} if 'data' in body: optional_data_keyset = set(body['data'].keys()) dataframe_optional_data = set(X_predict.keys()).difference( ModelApi.REQUIRED_FIELDS) keys_with_data_to_be_added = optional_data_keyset.intersection( dataframe_optional_data) results = [] for index, row in X_predict.iterrows(): if row['Pollutant'] is not None and math.isnan( row['Pollutant']): continue input_instance = { 'date_time': index, 'longitude': row['Longitude'], 'latitude': row['Latitude'], 'pollutant': body['pollutant'], 'pollution_value': row['Pollutant'], 'uncertainty': row['Uncertainty'], 'data': {} } if 'data' in body: for key in keys_with_data_to_be_added: input_instance['data'][key] = row[key] result = DatasetsApi.insert_single_instance(input_instance, predicted=True) result = DatasetsApi.insert_single_prediction(input_instance) results.append(result) predictions = ModelApi.__predictions_to_primitive_float( predictions) print('failed following: ') print(list(filter(lambda x: not x[0], results))) return True, predictions return False, predictions # in case that model does not exist