def make_predictions(body, overwrite=False): """ Function for making predictions over a time range and locations by a given model :param body: :param overwrite: :return: bool, list - boolean whether it is successful and list with predictions and uncertanties """ dataset = DatasetsApi.get_dataset(body, use_dataframe=True) if dataset is None: return False, [] # get dataset with empty pollutant values incomplete_dataset = dataset if overwrite else dataset[ dataset['Pollutant'].isnull()] # split the dataset, do not normalize until means and stds are taken from the model X_predict, y_predict, _, _, stats = MainTransformer.get_training_and_test_set( incomplete_dataset, 'Pollutant', 'Uncertainty', size=1, normalize=False) model, model_record, err = ModelApi.get_model_by_name(body['name']) predictions = [] print(err) if err is None: training_dataset_stats = {} print('Verifying features...') if X_predict is None or X_predict.shape[1] != model.n_features: print('Wrong number of features') print(X_predict.shape[1] - 1) print(model.n_features) return False, [] print('Checking model stats...') if 'dataset_stats' in model.stats: training_dataset_stats = model.stats['dataset_stats'] feature_names = set(training_dataset_stats.keys()) dataset_features = set(X_predict) dataset_features.discard('DateTime') print('Checking feature names...') if feature_names != dataset_features: return False, [] print('Normalizing...') MainTransformer.normalize(X_predict, stats=training_dataset_stats, inplace=True) else: return False, [] print('Preidicting...') predictions = model.predict(X_predict, uncertainty=True) MainTransformer.unnormalize(X_predict, training_dataset_stats, inplace=True) MainTransformer.remove_periodic_f(X_predict) X_predict.loc[:, 'Pollutant'] = Series([x[0] for x in predictions], index=X_predict.index) X_predict.loc[:, 'Uncertainty'] = Series([x[1] for x in predictions], index=X_predict.index) # add predictions to the DB print('Done. Adding to database...') optional_data_keyset = set(body['data'].keys()) dataframe_optional_data = set(X_predict.keys()).difference( ModelApi.REQUIRED_FIELDS) keys_with_data_to_be_added = optional_data_keyset.intersection( dataframe_optional_data) results = [] for index, row in X_predict.iterrows(): if row['Pollutant'] is not None and math.isnan( row['Pollutant']): continue input_instance = { 'date_time': index, 'longitude': row['Longitude'], 'latitude': row['Latitude'], 'pollutant': body['pollutant'], 'pollution_value': row['Pollutant'], 'uncertainty': row['Uncertainty'], 'data': {} } print(body['pollutant']) print(row['Pollutant']) for key in keys_with_data_to_be_added: input_instance['data'][key] = row[key] result = DatasetsApi.insert_single_prediction(input_instance) results.append(result) predictions = ModelApi.__predictions_to_primitive_float( predictions) print('failed following: ') print(list(filter(lambda x: not x[0], results))) return True, predictions return False, predictions # in case that model does not exist
def get_single_instance_dataset(body, stats=None, prev=None): """ Function for generating a single instance dataset for CNN :param body: dict - parameters from request :param stats: dict - stats for dataset normalization on which model was trained :param prev: int - number of previous records to be generated :return: DataFrame with predictions """ if not isinstance(body, dict): return None if 'date_time' not in body or not isinstance(body['date_time'], str): return None if 'longitude' not in body or not isinstance(body['longitude'], float): return None if 'latitude' not in body or not isinstance(body['latitude'], float): return None df_schema = { 'DateTime': [body['date_time']], 'Longitude': body['longitude'], 'Latitude': body['latitude'], 'Pollutant': None } instance_object = { 'DateTime': body['date_time'], 'Longitude': body['longitude'], 'Latitude': body['latitude'], 'Pollutant': None } data_keys = list() if 'data' in body and 'weather' in body['data']: for key in body['data']['weather'].keys(): df_schema[key] = [body['data']['weather'][key]] instance_object[key] = body['data']['weather'][key] if isinstance(prev, int): ready_data = None DatasetsApi.generate_previous_records(df_schema, prev, ready_data) dataset = pandas.DataFrame(df_schema) automatic_normalization = not isinstance( stats, dict) # if stats parameter is given dataset.set_index(keys='DateTime', inplace=True) MainTransformer.periodic_f(dataset) X_predict, _, _, _, _ = MainTransformer.get_training_and_test_set( dataset, 'Pollutant', 'Uncertainty', size=1, normalize=automatic_normalization) if not automatic_normalization: MainTransformer.normalize(X_predict, stats=stats, inplace=True) return X_predict
def train_model(model_name, body): """ Function for further training a model provided that the model already exists in the DB :param model_name: str - name of the existing model :param body: dict - body of the request :return: (True, None) | (False, str) | (False, list) """ print('Getting dataset...') model, model_record, err = ModelApi.get_model_by_name(model_name) if model is None: return False, err dataset = DatasetsApi.get_dataset(body, use_dataframe=True) if dataset is None: return False, Errors.NO_DATA.value complete_dataset = dataset[dataset['Pollutant'].notnull()] if 'n_instances_trained' in model.stats and 'dataset_stats' in model.stats: updated_stats, new_stats = MainTransformer.normalize_with_old_stats( model.stats['n_instances_trained'], model.stats['dataset_stats'], complete_dataset) MainTransformer.normalize(complete_dataset, stats=updated_stats, inplace=True) else: return False, [] stats = new_stats X_train, y_train, _, _, _ = MainTransformer.get_training_and_test_set( complete_dataset, 'Pollutant', 'Uncertainty', size=1, normalize=False) training_dataset_stats = {} print('Verifying dataset...') if 'dataset_stats' in model.stats: training_dataset_stats = model.stats['dataset_stats'] feature_names = set(training_dataset_stats.keys()) dataset_features = set(X_train) dataset_features.discard('DateTime') print('Verifying dataset features') if feature_names != dataset_features: print('feature names', feature_names, training_dataset_stats, training_dataset_stats.keys()) print('dataset features', dataset_features) if feature_names.intersection( dataset_features) == feature_names: print('Dataset is in the expected shape') print('difference') difference = dataset_features.difference(feature_names) print(difference) MainTransformer.remove_features(X_train, difference) else: print(feature_names) print(dataset_features) return False, [] else: return False, [] print('Starting to train model...') model.train(X_train, y_train, stats=stats) model_params, extra_params = model.model_to_json() result = DBManager.upsert_model(model_name, model_record.type, model_record.resource, model_params=model_params, extra_params=extra_params) print(result) return result