Example #1
0
 def run(self, image_or_path_or_tensor, meta=None):
     if isinstance(image_or_path_or_tensor, np.ndarray):
         image = image_or_path_or_tensor
     elif type(image_or_path_or_tensor) == type(''):
         image = cv2.imread(image_or_path_or_tensor)
     detections = []
     cost = 0
     for scale in self.scales:
         images, meta = self.pre_process(image, scale, meta)
         images = images.to(device)
         # print('input shape: {}'.format(images.shape))
         torch.cuda.synchronize()
         tic = time.time()
         _, dets = self.process(images, return_time=True)
         cost = time.time() - tic
         print('cost: {}, fps: {}'.format(cost, 1 / cost))
         torch.cuda.synchronize()
         dets = self.post_process(dets, meta, scale)
         torch.cuda.synchronize()
         detections.append(dets)
     print(detections)
     res = visualize_det_cv2(image, detections[0], coco_label_map_list[1:],
                             0.3)
     cv2.putText(res, 'fps: {0:.4f}'.format(1 / cost), (30, 30),
                 cv2.FONT_HERSHEY_COMPLEX, 0.7, (0, 0, 255), 2)
     return res
Example #2
0
def demo(v_f):
    cfg = Config.fromfile(config_f)
    anchor_config = anchors(cfg)
    priorbox = PriorBox(anchor_config)
    net = build_net('test',
                    size=cfg.model.input_size,
                    config=cfg.model.m2det_config)
    init_net(net, cfg, checkpoint_path)
    net.eval().to(device)
    with torch.no_grad():
        priors = priorbox.forward().to(device)
    _preprocess = BaseTransform(
        cfg.model.input_size, cfg.model.rgb_means, (2, 0, 1))
    detector = Detect(cfg.model.m2det_config.num_classes,
                      cfg.loss.bkg_label, anchor_config)
    logging.info('detector initiated.')

    cap = cv2.VideoCapture(v_f)
    logging.info('detect on: {}'.format(v_f))
    logging.info('video width: {}, height: {}'.format(int(cap.get(3)), int(cap.get(4))))
    out_video = cv2.VideoWriter("result.mp4", cv2.VideoWriter_fourcc(*'MJPG'), 24, (int(cap.get(3)), int(cap.get(4))))

    while True:
        ret, image = cap.read()
        if not ret:
            out_video.release()
            cv2.destroyAllWindows()
            cap.release()
            break
        w, h = image.shape[1], image.shape[0]
        img = _preprocess(image).unsqueeze(0).to(device)
        scale = torch.Tensor([w, h, w, h])
        out = net(img)
        boxes, scores = detector.forward(out, priors)
        boxes = (boxes[0]*scale).cpu().numpy()
        scores = scores[0].cpu().numpy()
        allboxes = []
        for j in range(1, cfg.model.m2det_config.num_classes):
            inds = np.where(scores[:, j] > cfg.test_cfg.score_threshold)[0]
            if len(inds) == 0:
                continue
            c_bboxes = boxes[inds]
            c_scores = scores[inds, j]
            c_dets = np.hstack((c_bboxes, c_scores[:, np.newaxis])).astype(
                np.float32, copy=False)
            soft_nms = cfg.test_cfg.soft_nms
            # min_thresh, device_id=0 if cfg.test_cfg.cuda else None)
            keep = nms(c_dets, cfg.test_cfg.iou, force_cpu=soft_nms)
            keep = keep[:cfg.test_cfg.keep_per_class]
            c_dets = c_dets[keep, :]
            allboxes.extend([_.tolist()+[j] for _ in c_dets])
        if len(allboxes) > 0:
            allboxes = np.array(allboxes)
            # [boxes, scores, label_id] -> [id, score, boxes] 0, 1, 2, 3, 4, 5
            allboxes = allboxes[:, [5, 4, 0, 1, 2, 3]]
            logging.info('allboxes shape: {}'.format(allboxes.shape))
            res = visualize_det_cv2(image, allboxes, classes=classes, thresh=0.2)
            # res = visualize_det_cv2_fancy(image, allboxes, classes=classes, thresh=0.2, r=4, d=6)
            cv2.imshow('rr', res)
            out_video.write(res)
            cv2.waitKey(1)