def run(self, image_or_path_or_tensor, meta=None): if isinstance(image_or_path_or_tensor, np.ndarray): image = image_or_path_or_tensor elif type(image_or_path_or_tensor) == type(''): image = cv2.imread(image_or_path_or_tensor) detections = [] cost = 0 for scale in self.scales: images, meta = self.pre_process(image, scale, meta) images = images.to(device) # print('input shape: {}'.format(images.shape)) torch.cuda.synchronize() tic = time.time() _, dets = self.process(images, return_time=True) cost = time.time() - tic print('cost: {}, fps: {}'.format(cost, 1 / cost)) torch.cuda.synchronize() dets = self.post_process(dets, meta, scale) torch.cuda.synchronize() detections.append(dets) print(detections) res = visualize_det_cv2(image, detections[0], coco_label_map_list[1:], 0.3) cv2.putText(res, 'fps: {0:.4f}'.format(1 / cost), (30, 30), cv2.FONT_HERSHEY_COMPLEX, 0.7, (0, 0, 255), 2) return res
def demo(v_f): cfg = Config.fromfile(config_f) anchor_config = anchors(cfg) priorbox = PriorBox(anchor_config) net = build_net('test', size=cfg.model.input_size, config=cfg.model.m2det_config) init_net(net, cfg, checkpoint_path) net.eval().to(device) with torch.no_grad(): priors = priorbox.forward().to(device) _preprocess = BaseTransform( cfg.model.input_size, cfg.model.rgb_means, (2, 0, 1)) detector = Detect(cfg.model.m2det_config.num_classes, cfg.loss.bkg_label, anchor_config) logging.info('detector initiated.') cap = cv2.VideoCapture(v_f) logging.info('detect on: {}'.format(v_f)) logging.info('video width: {}, height: {}'.format(int(cap.get(3)), int(cap.get(4)))) out_video = cv2.VideoWriter("result.mp4", cv2.VideoWriter_fourcc(*'MJPG'), 24, (int(cap.get(3)), int(cap.get(4)))) while True: ret, image = cap.read() if not ret: out_video.release() cv2.destroyAllWindows() cap.release() break w, h = image.shape[1], image.shape[0] img = _preprocess(image).unsqueeze(0).to(device) scale = torch.Tensor([w, h, w, h]) out = net(img) boxes, scores = detector.forward(out, priors) boxes = (boxes[0]*scale).cpu().numpy() scores = scores[0].cpu().numpy() allboxes = [] for j in range(1, cfg.model.m2det_config.num_classes): inds = np.where(scores[:, j] > cfg.test_cfg.score_threshold)[0] if len(inds) == 0: continue c_bboxes = boxes[inds] c_scores = scores[inds, j] c_dets = np.hstack((c_bboxes, c_scores[:, np.newaxis])).astype( np.float32, copy=False) soft_nms = cfg.test_cfg.soft_nms # min_thresh, device_id=0 if cfg.test_cfg.cuda else None) keep = nms(c_dets, cfg.test_cfg.iou, force_cpu=soft_nms) keep = keep[:cfg.test_cfg.keep_per_class] c_dets = c_dets[keep, :] allboxes.extend([_.tolist()+[j] for _ in c_dets]) if len(allboxes) > 0: allboxes = np.array(allboxes) # [boxes, scores, label_id] -> [id, score, boxes] 0, 1, 2, 3, 4, 5 allboxes = allboxes[:, [5, 4, 0, 1, 2, 3]] logging.info('allboxes shape: {}'.format(allboxes.shape)) res = visualize_det_cv2(image, allboxes, classes=classes, thresh=0.2) # res = visualize_det_cv2_fancy(image, allboxes, classes=classes, thresh=0.2, r=4, d=6) cv2.imshow('rr', res) out_video.write(res) cv2.waitKey(1)