Example #1
0
def plot_coincidence_rate_distance(data, sim_data):
    """Plot results

    :param distances: dictionary with occuring distances for different
                      combinations of number of detectors.
    :param coincidence_rates: dictionary of occuring coincidence rates for
                              different combinations of number of detectors.
    :param rate_errors: errors on the coincidence rates.

    """
    (distances, coincidence_rates, interval_rates, distance_errors,
     rate_errors, pairs) = data
    sim_distances, sim_energies, sim_areas = sim_data
    markers = {4: 'o', 6: 'triangle', 8: 'square'}
    colors = {4: 'red', 6: 'black!50!green', 8: 'black!20!blue'}

    coincidence_window = 10e-6  # seconds
    freq_2 = 0.3
    freq_4 = 0.6
    background = {
        4: 2 * freq_2 * freq_2 * coincidence_window,
        6: 2 * freq_2 * freq_4 * coincidence_window,
        8: 2 * freq_4 * freq_4 * coincidence_window
    }

    for rates, name in [(coincidence_rates, 'coincidence'),
                        (interval_rates, 'interval')]:
        plot = Plot('loglog')
        for n in distances.keys():
            plot.draw_horizontal_line(background[n], 'dashed,' + colors[n])


#         for n in distances.keys():
        for n in [4, 8]:
            expected_rates = expected_rate(distances[n],
                                           rates[n],
                                           background[n],
                                           sim_distances,
                                           sim_energies,
                                           sim_areas[n],
                                           n=n)
            plot.plot(sim_distances,
                      expected_rates,
                      linestyle=colors[n],
                      mark=None,
                      markstyle='mark size=0.5pt')

        for n in distances.keys():
            plot.scatter(distances[n],
                         rates[n],
                         xerr=distance_errors[n],
                         yerr=rate_errors[n],
                         mark=markers[n],
                         markstyle='%s, mark size=.75pt' % colors[n])
        plot.set_xlabel(r'Distance between stations [\si{\meter}]')
        plot.set_ylabel(r'%s rate [\si{\hertz}]' % name.title())
        plot.set_axis_options('log origin y=infty')
        plot.set_xlimits(min=1, max=20e3)
        plot.set_ylimits(min=1e-7, max=5e-1)
        plot.save_as_pdf('distance_v_%s_rate' % name)
Example #2
0
def plot_n_azimuth(path='/'):
    with tables.open_file(RESULT_DATA, 'r') as data:
        coin = data.get_node(path + 'coincidences/coincidences')
        in_azi = coin.col('azimuth')
        ud_azi = coin.read_where('s0', field='azimuth')
        lr_azi = coin.read_where('s1', field='azimuth')
        sq_azi = coin.read_where('s2', field='azimuth')
        udlr_azi = coin.get_where_list('s0 & s1')
        print('Percentage detected in both %f ' %
              (float(len(udlr_azi)) / len(in_azi)))

        bins = np.linspace(-np.pi, np.pi, 30)
        in_counts = np.histogram(in_azi, bins)[0].astype(float)
        ud_counts = np.histogram(ud_azi, bins)[0].astype(float)
        lr_counts = np.histogram(lr_azi, bins)[0].astype(float)
        sq_counts = np.histogram(sq_azi, bins)[0].astype(float)

        print('Detected: UD %d | LR %d | SQ %d' %
              (sum(ud_counts), sum(lr_counts), sum(sq_counts)))

        plot = Plot()
        plot.histogram(ud_counts / in_counts, bins, linestyle='black')
        plot.histogram(lr_counts / in_counts, bins + 0.01, linestyle='red')
        plot.histogram(sq_counts / in_counts, bins + 0.01, linestyle='blue')
        plot.histogram((ud_counts - lr_counts) / in_counts,
                       bins,
                       linestyle='black')
        plot.set_xlabel(r'Shower azimuth [\si{\radian}]')
        plot.set_ylabel(r'Percentage detected')
        plot.set_xlimits(bins[0], bins[-1])
        plot.draw_horizontal_line(0, linestyle='thin, gray')
        #         plot.set_ylimits(0)
        plot.save_as_pdf('azimuth_percentage' + path.replace('/', '_'))
Example #3
0
    def plot_fit_residuals_station(self):
        plot = Plot()
        res = fit_function(self.slice_bins_c, *self.fit) - self.med_k
        plot.scatter(self.slice_bins_c,
                     res,
                     xerr=(self.slice_bins[1:] - self.slice_bins[:-1]) / 2.,
                     yerr=self.std_k,
                     markstyle='red, mark size=1pt')
        plot.draw_horizontal_line(0, linestyle='gray')

        plot.set_ylimits(min=-30, max=30)
        plot.set_xlimits(min=0, max=max(self.slice_bins))
        plot.set_xlabel(r'HiSPARC detected density [\si{\per\meter\squared}]')
        plot.set_ylabel(
            r'Residuals (Predicted - Fit) [\si{\per\meter\squared}]')
        plot.save_as_pdf('plots/fit_residuals_station')
Example #4
0
def zoom_pulse(raw_traces):
    plot = Plot()
    start, end = get_outer_limits(raw_traces, 253)

    for i, raw_trace in enumerate(raw_traces):
        plot.plot(arange(start * 2.5, end * 2.5, 2.5),
                  raw_trace[start:end],
                  mark=None,
                  linestyle=COLORS[i])

    hisparc_version = 2

    if hisparc_version == 3:
        low = 81
        high = 150
    elif hisparc_version == 2:
        low = 253
        high = 323

    plot.draw_horizontal_line(low, 'gray')
    plot.add_pin_at_xy(start * 2.5,
                       low,
                       'low',
                       location='above right',
                       use_arrow=False)
    plot.draw_horizontal_line(high, 'gray')
    plot.add_pin_at_xy(start * 2.5,
                       high,
                       'high',
                       location='above right',
                       use_arrow=False)

    plot.set_ylimits(min=0)
    plot.set_xlimits(min=start * 2.5, max=end * 2.5 - 2.5)
    plot.set_ylabel(r'Signal strength [ADC counts]')
    plot.set_xlabel(r'Sample [\si{\nano\second}]')
    plot.save_as_pdf('pulse')
Example #5
0
def plot_traces(event, station):
    s = Station(station)
    plot = Plot()
    traces = s.event_trace(event['timestamp'], event['nanoseconds'], raw=True)
    for j, trace in enumerate(traces):
        t = arange(0, (2.5 * len(traces[0])), 2.5)
        plot.plot(t, trace, mark=None, linestyle=COLORS[j])
    n_peaks = event['n_peaks']
    plot.set_title('%d - %d' % (station, event['ext_timestamp']))
    plot.set_label('%d ' * 4 % tuple(n_peak for n_peak in n_peaks))
    plot.set_xlabel('t [\si{n\second}]')
    plot.set_ylabel('Signal strength')
    plot.set_xlimits(min=0, max=2.5 * len(traces[0]))
    plot.set_ylimits(min=150, max=500)  # max=2 ** 12
    plot.draw_horizontal_line(253, linestyle='gray')
    plot.draw_horizontal_line(323, linestyle='gray')
    plot.draw_horizontal_line(event['baseline'][0] + 20, linestyle='thin,gray')
    plot.draw_horizontal_line(event['baseline'][1] + 20,
                              linestyle='thin,red!40!black')
    plot.draw_horizontal_line(event['baseline'][2] + 20,
                              linestyle='thin,green!40!black')
    plot.draw_horizontal_line(event['baseline'][3] + 20,
                              linestyle='thin,blue!40!black')
    plot.save_as_pdf('traces_%d_%d' % (station, event['ext_timestamp']))
Example #6
0
def plot_integral(trace, baseline):
    plot = Plot()

    time = arange(0, len(trace) * 2.5, 2.5)
    plot.plot(time, trace, mark=None, linestyle='const plot')
    integral_trace = where(trace > baseline + BASELINE_THRESHOLD, trace,
                           baseline)
    plot.shade_region(time + 2.5, [baseline] * len(trace),
                      integral_trace,
                      color='lightgray, const plot')

    plot.draw_horizontal_line(baseline, linestyle='densely dashed, gray')
    plot.draw_horizontal_line(baseline + BASELINE_THRESHOLD,
                              linestyle='densely dotted, gray')
    plot.draw_horizontal_line(max(trace), linestyle='densely dashed, gray')

    #     plot.set_ylimits(0)
    plot.set_xlabel(r'Trace time [\si{\ns}]')
    plot.set_ylabel(r'Signal strength [ADC]')
    plot.save_as_pdf('integral')
Example #7
0
def plot_pulseintegrals():

    station_number = 501
    in_bins = linspace(1, 15000, 200)
    ph_bins = linspace(10, 1500, 200)
    az_bins = linspace(-pi, pi, 40)
    ze_bins = linspace(0, pi / 2., 50)
    min_n = 1.5
    max_zenith = radians(45)

    with tables.open_file(STATION_PATH, 'r') as data:
        sn = data.get_node('/s%d' % station_number)
        n_filter = set(
            sn.events.get_where_list(
                '(n1 >= min_n) & (n2 >= min_n) & (n4 >= min_n)'))
        z_filter = set(
            sn.reconstructions.get_where_list(
                '(zenith < max_zenith) & d1 & d2 & d4'))
        filter = list(n_filter & z_filter)
        integrals = sn.events.col('integrals')[filter]
        pulseheights = sn.events.col('pulseheights')[filter]
        azimuths = sn.reconstructions.col('azimuth')[filter]
        zeniths = sn.reconstructions.col('zenith')[filter]

    plot = Plot()
    counts, az_bins = histogram(azimuths, bins=az_bins)
    plot.histogram(counts, az_bins)

    # Smoothed version of azimuth histogram to counter discreteness at low zenith.
    smoothing = normal(scale=radians(8), size=len(azimuths))
    counts, az_bins = histogram(norm_angle(azimuths + smoothing), bins=az_bins)
    plot.histogram(counts, az_bins, linestyle='gray')

    plot.draw_horizontal_line(mean(counts), linestyle='red')
    plot.draw_horizontal_line(mean(counts) + sqrt(mean(counts)),
                              linestyle='dashed, red')
    plot.draw_horizontal_line(mean(counts) - sqrt(mean(counts)),
                              linestyle='dashed, red')
    plot.set_ylimits(min=0)
    plot.set_xlimits(-pi, pi)
    plot.save_as_pdf('azimuth')

    plot = Plot()
    counts, ze_bins = histogram(zeniths, bins=ze_bins)
    plot.histogram(counts, ze_bins)
    plot.set_ylimits(min=0)
    plot.set_xlimits(0, pi / 2)
    plot.save_as_pdf('zeniths')

    for i in range(4):
        plot = Plot('semilogy')
        counts, in_bins = histogram(integrals[:, i], bins=in_bins)
        plot.histogram(counts, in_bins)
        counts, in_bins = histogram(integrals[:, i] * cos(zeniths),
                                    bins=in_bins)
        plot.histogram(counts, in_bins, linestyle='red')
        plot.set_ylimits(min=1)
        plot.save_as_pdf('integrals_%d' % i)

        plot = Plot('semilogy')
        counts, ph_bins = histogram(pulseheights[:, i], bins=ph_bins)
        plot.histogram(counts, ph_bins)
        counts, ph_bins = histogram(pulseheights[:, i] * cos(zeniths),
                                    bins=ph_bins)
        plot.histogram(counts, ph_bins, linestyle='red')
        plot.set_ylimits(min=1)
        plot.save_as_pdf('pulseheights_%d' % i)
Example #8
0
def plot_thickness(seed):
    plot = Plot('semilogx')
    plot2 = Plot('loglog')
    data_path = os.path.join(LOCAL_STORE, seed, 'corsika.h5')
    with tables.open_file(data_path) as data:
        particles = data.get_node('/groundparticles')
        header = data.get_node_attr('/', 'event_header')
        end = data.get_node_attr('/', 'event_end')
        time_first_interaction = (header.first_interaction_altitude -
                                  header.observation_heights[0]) / .2998
        core_distances = logspace(0, 4, 31)
        min_t = []
        lower_t = []
        low_t = []
        median_t = []
        high_t = []
        higher_t = []
        max_t = []
        distances = []
        density = []
        xerr = []
        yerr = []
        for r_inner, r_outer in zip(core_distances[:-1], core_distances[1:]):
            t = particles.read_where('(r >= %f) & (r <= %f) & '
                                     '(particle_id >= 2) & (particle_id <= 6)' %
                                     (r_inner, r_outer), field='t')

            if len(t) < 1:
                continue

            area = area_between(r_outer, r_inner)
            density.append(len(t) / area)
            distances.append((r_outer + r_inner) / 2)
            # distances.append(10**((log10(r_outer) + log10(r_inner)) / 2))
            yerr.append(sqrt(len(t)) / area)
            xerr.append((r_outer - r_inner) / 2)
            percentiles_t = percentile(t, [0, 50])
            ref_t, med_t = percentiles_t - time_first_interaction
            min_t.append(ref_t)
            # lower_t.append(lsig2_t)
            # low_t.append(lsig1_t)
            median_t.append(med_t)
            # high_t.append(hsig1_t)
            # higher_t.append(hsig2_t)
            # max_t.append(m_t)

        energy = log10(header.energy)
        shower_size = log10(end.n_electrons_levels + end.n_muons_levels)
    plot.set_label('E=$10^{%.1f}$eV, size=$10^{%.1f}$' % (energy, shower_size),
                   location='upper left')

    plot.plot(distances, median_t, mark=None)
    plot.plot(distances, min_t, linestyle='dashed', mark=None)
    plot.draw_horizontal_line(1500)
    plot.set_xlimits(min=.5, max=1e4)
    plot.set_xlabel(r'core distance [m]')
    plot.set_ylabel(r'time after first [ns]')
    plot.set_ylimits(min=-10, max=1000)
    plot.save_as_pdf('plots/%.1f_%.1f_%s_front.pdf' % (energy, shower_size, seed))

    plot2.set_xlimits(min=.5, max=1e5)
    plot2.set_xlabel(r'core distance')
    plot2.set_ylabel(r'particle density')
    plot2.plot(distances, density, xerr=xerr, yerr=yerr, mark=None, markstyle='transparent', linestyle=None)
    plot2.draw_horizontal_line(2.46)
    # plot2.draw_horizontal_line(0.6813)
    plot2.save_as_pdf('plots/%.1f_%.1f_%s_dens.pdf' % (energy, shower_size, seed))