Example #1
0
def analyse(name):
    data = genfromtxt('data/%s.tsv' % name, delimiter='\t', dtype=None,
                      names=['ext_timestamp', 'time_delta'])
    time_delta = data['time_delta']

    # Plot distribution
    counts, bins = histogram(time_delta, bins=arange(-10.5, 11.5, 1))
    plot = Plot()
    plot.histogram(counts, bins)
    plot.set_ylimits(min=0)
    plot.set_ylabel('counts')
    plot.set_xlabel(r'time delta [\si{\nano\second}]')
    plot.save_as_pdf(name)

    # Plot moving average
    n = 300
    skip = 20
    moving_average = convolve(time_delta, ones((n,)) / n, mode='valid')
    plot = Plot()
    timestamps = (data['ext_timestamp'][:-n + 1:skip] -
                  data['ext_timestamp'][0]) / 1e9 / 3600.
    plot.plot(timestamps, moving_average[::skip], mark=None)
    plot.set_xlimits(min=0)
    plot.set_ylabel(r'time delta [\si{\nano\second}]')
    plot.set_xlabel('timestamp [\si{\hour}]')
    plot.save_as_pdf('moving_average_%s' % name)
Example #2
0
def plot_raw(raw_traces):
    length = 2.5 * len(raw_traces[0])
    plot = Plot()
    max_signal = max(chain.from_iterable(raw_traces))
    plot.add_pin_at_xy(500,
                       max_signal,
                       'pre-trigger',
                       location='above',
                       use_arrow=False)
    plot.draw_vertical_line(1000, 'gray')
    plot.add_pin_at_xy(1750,
                       max_signal,
                       'trigger',
                       location='above',
                       use_arrow=False)
    plot.draw_vertical_line(2500, 'gray')
    plot.add_pin_at_xy(4250,
                       max_signal,
                       'post-trigger',
                       location='above',
                       use_arrow=False)

    for i, raw_trace in enumerate(raw_traces):
        plot.plot(arange(0, length, 2.5),
                  raw_trace,
                  mark=None,
                  linestyle=COLORS[i])

    plot.set_ylimits(min=0)
    plot.set_xlimits(min=0, max=length)
    plot.set_ylabel(r'Signal strength [ADC counts]')
    plot.set_xlabel(r'Sample [\si{\nano\second}]')
    plot.save_as_pdf('raw')
Example #3
0
def plot_comparison_501_510(stats, field_name):
    plot = Plot()
    bins = arange(0, 1, .02)

    ref_stat = stats[501][field_name][0]
    stat = stats[510][field_name][0]

    tmp_stat = stat.compress((ref_stat > 0) & (stat > 0))
    tmp_ref_stat = ref_stat.compress((ref_stat > 0) & (stat > 0))
    counts, xbin, ybin = histogram2d(tmp_stat, tmp_ref_stat, bins=bins)
    plot.histogram2d(counts, xbin, ybin, type='reverse_bw', bitmap=True)
    plot.plot([0, 1.2], [0, 1.2], mark=None, linestyle='red, very thin')

    if field_name == 'event_rate':
        label = r'Event rate [\si{\hertz}]'
    elif field_name == 'mpv':
        label = r'MPV [ADC.ns]'
    else:
        label = (r'Fraction of bad %s data [\si{\percent}]' %
                 field_name.replace('_', ' '))
    plot.set_ylabel(label)
    plot.set_xlabel(label)

    if field_name in ['event_rate', 'mpv']:
        plot.save_as_pdf('plots_501_510/compare_%s' % field_name)
    else:
        plot.save_as_pdf('plots_501_510/compare_bad_fraction_%s' % field_name)
Example #4
0
def plot_E_d_P(ldf):
    energies = linspace(13, 21, 100)
    sizes = energy_to_size(energies, 13.3, 1.07)
    core_distances = logspace(-1, 4.5, 100)

    probabilities = []
    for size in sizes:
        prob_temp = []
        for distance in core_distances:
            prob_temp.append(P_2(ldf, distance, size))
        probabilities.append(prob_temp)
    probabilities = array(probabilities)

    plot = Plot('semilogx')

    low = []
    mid = []
    high = []
    for p in probabilities:
        # Using `1 -` to ensure x (i.e. p) is increasing.
        low.append(interp(1 - 0.10, 1 - p, core_distances))
        mid.append(interp(1 - 0.50, 1 - p, core_distances))
        high.append(interp(1 - 0.90, 1 - p, core_distances))
    plot.plot(low, energies, linestyle='densely dotted', mark=None)
    plot.plot(mid, energies, linestyle='densely dashed', mark=None)
    plot.plot(high, energies, mark=None)
    plot.set_ylimits(13, 20)
    plot.set_xlimits(1., 1e4)

    plot.set_xlabel(r'Core distance [\si{\meter}]')
    plot.set_ylabel(r'Energy [log10(E/\si{\eV})]')
    plot.save_as_pdf('efficiency_distance_energy_' + ldf.__class__.__name__)
Example #5
0
def main(ts, ns):
    station = Station(501)
    traces = station.event_trace(ts, ns, True)

    dr = DataReduction()
    reduced_traces, o = dr.reduce_traces(array(traces).T, return_offset=True)
    reduced_traces = reduced_traces.T
    plot = Plot()

    t = arange(len(traces[0])) * 2.5
    for i, trace in enumerate(traces):
        plot.plot(t, trace, linestyle='%s, thin' % COLORS[i], mark=None)
    plot.draw_vertical_line(o * 2.5, 'gray')
    plot.draw_vertical_line((o + len(reduced_traces[0])) * 2.5, 'gray')

    plot.set_axis_options('line join=round')
    plot.set_xlabel(r'Event time [\si{\ns}]')
    plot.set_ylabel(r'Signal strength [ADCcounts]')
    plot.set_xlimits(t[0], t[-1])

    plot.save_as_pdf('raw_traces_%d_%d' % (ts, ns))

    t = arange(o, o + len(reduced_traces[0])) * 2.5
    for i, trace in enumerate(reduced_traces):
        plot.plot(t, trace, linestyle='%s, thin' % COLORS[i], mark=None)
    plot.set_axis_options('line join=round')
    plot.set_xlabel(r'Event time [\si{\ns}]')
    plot.set_ylabel(r'Signal strength [ADCcounts]')
    plot.set_xlimits(t[0], t[-1])

    plot.save_as_pdf('reduced_traces_%d_%d' % (ts, ns))
Example #6
0
def plot_shower_size(leptons=['electron', 'muon']):
    plot = Plot(axis='semilogy')
    cq = CorsikaQuery(OVERVIEW)
    p = 'proton'
    for e in sorted(cq.available_parameters('energy', particle=p)):
        median_size = []
        min_size = []
        max_size = []
        zeniths = sorted(cq.available_parameters('zenith', energy=e, particle=p))
        for z in zeniths:
            selection = cq.simulations(zenith=z, energy=e, particle=p)
            n_leptons = selection['n_%s' % leptons[0]]
            for lepton in leptons[1:]:
                n_leptons += selection['n_%s' % lepton]
            sizes = percentile(n_leptons, [16, 50, 84])
            min_size.append(sizes[0] if sizes[0] else 0.1)
            median_size.append(sizes[1] if sizes[1] else 0.1)
            max_size.append(sizes[2] if sizes[2] else 0.1)
        if len(zeniths):
            plot.plot(zeniths, median_size, linestyle='very thin')
            plot.shade_region(zeniths, min_size, max_size,
                              color='lightgray, semitransparent')
            plot.add_pin('%.1f' % e, relative_position=0)

    plot.set_xticks([t for t in arange(0, 60.1, 7.5)])
    plot.set_ylimits(1, 1e9)
    plot.set_ylabel(r'Shower size (leptons)')
    plot.set_xlabel(r'Zenith [\si{\degree}]')
    plot.save_as_pdf('shower_sizes_%s' % '_'.join(leptons))
    cq.finish()
Example #7
0
def plot_coincidence_rate_distance(data, sim_data):
    """Plot results

    :param distances: dictionary with occuring distances for different
                      combinations of number of detectors.
    :param coincidence_rates: dictionary of occuring coincidence rates for
                              different combinations of number of detectors.
    :param rate_errors: errors on the coincidence rates.

    """
    (distances, coincidence_rates, interval_rates, distance_errors,
     rate_errors, pairs) = data
    sim_distances, sim_energies, sim_areas = sim_data
    markers = {4: 'o', 6: 'triangle', 8: 'square'}
    colors = {4: 'red', 6: 'black!50!green', 8: 'black!20!blue'}

    coincidence_window = 10e-6  # seconds
    freq_2 = 0.3
    freq_4 = 0.6
    background = {
        4: 2 * freq_2 * freq_2 * coincidence_window,
        6: 2 * freq_2 * freq_4 * coincidence_window,
        8: 2 * freq_4 * freq_4 * coincidence_window
    }

    for rates, name in [(coincidence_rates, 'coincidence'),
                        (interval_rates, 'interval')]:
        plot = Plot('loglog')
        for n in distances.keys():
            plot.draw_horizontal_line(background[n], 'dashed,' + colors[n])


#         for n in distances.keys():
        for n in [4, 8]:
            expected_rates = expected_rate(distances[n],
                                           rates[n],
                                           background[n],
                                           sim_distances,
                                           sim_energies,
                                           sim_areas[n],
                                           n=n)
            plot.plot(sim_distances,
                      expected_rates,
                      linestyle=colors[n],
                      mark=None,
                      markstyle='mark size=0.5pt')

        for n in distances.keys():
            plot.scatter(distances[n],
                         rates[n],
                         xerr=distance_errors[n],
                         yerr=rate_errors[n],
                         mark=markers[n],
                         markstyle='%s, mark size=.75pt' % colors[n])
        plot.set_xlabel(r'Distance between stations [\si{\meter}]')
        plot.set_ylabel(r'%s rate [\si{\hertz}]' % name.title())
        plot.set_axis_options('log origin y=infty')
        plot.set_xlimits(min=1, max=20e3)
        plot.set_ylimits(min=1e-7, max=5e-1)
        plot.save_as_pdf('distance_v_%s_rate' % name)
Example #8
0
def plot_interaction_height(cq):
    plot = Plot()

    p = 'proton'
    for e in sorted(cq.available_parameters('energy', particle=p)):
        median_altitude = []
        min_altitude = []
        max_altitude = []
        zeniths = []
        for z in sorted(cq.available_parameters('zenith', particle=p,
                                                energy=e)):
            selection = cq.simulations(particle=p, energy=e, zenith=z)
            if len(selection) > 50:
                interaction_altitudes = selection[
                    'first_interaction_altitude'] / 1e3
                median_altitude.append(median(interaction_altitudes))
                min_altitude.append(percentile(interaction_altitudes, 2))
                max_altitude.append(percentile(interaction_altitudes, 98))
                zeniths.append(z)
        if len(zeniths):
            plot.plot(zeniths + (e - 12) / 3., median_altitude)
            # plot.shade_region(zeniths, min_altitude, max_altitude,
            #                   color='lightgray,semitransparent')
            plot.add_pin('%.1f' % e, relative_position=0)
    plot.set_ylabel(r'First interaction altitude [\si{\kilo\meter}]')
    plot.set_xlabel(r'Zenith [\si{\radian}]')
    plot.save_as_pdf('plots/interaction_altitude')
Example #9
0
def plot_coincidence_v_interval_rate(data):
    """Plot results

    :param distances: dictionary with occuring distances for different
                      combinations of number of detectors.
    :param coincidence_rates: dictionary of occuring coincidence rates for
                              different combinations of number of detectors.
    :param rate_errors: errors on the coincidence rates.

    """
    (distances, coincidence_rates, interval_rates, distance_errors,
     rate_errors, pairs) = data
    markers = {4: 'o', 6: 'triangle', 8: 'square'}
    colors = {4: 'red', 6: 'black!50!green', 8: 'black!20!blue'}
    plot = Plot('loglog')

    plot.plot([1e-7, 1e-1], [1e-7, 1e-1], mark=None)
    for n in distances.keys():
        plot.scatter(interval_rates[n],
                     coincidence_rates[n],
                     yerr=rate_errors[n],
                     mark=markers[n],
                     markstyle='%s, thin, mark size=.75pt' % colors[n])

    plot.set_xlabel(r'Rate based on coincidence intervals [\si{\hertz}]')
    plot.set_ylabel(r'Rate based on coincidences and exposure [\si{\hertz}]')
    plot.set_axis_options('log origin y=infty')
    plot.set_xlimits(min=1e-7, max=1e-1)
    plot.set_ylimits(min=1e-7, max=1e-1)
    plot.save_as_pdf('interval_v_coincidence_rate')
Example #10
0
def main():
    # data series
    x = [0, 40, 60, 69, 80, 90, 100]
    y = [0, 0, 0.5, 2.96, 2, 1, .5]

    # make graph
    graph = Plot()

    # make Plot
    graph.plot(x, y, mark=None, linestyle='smooth,very thick')

    # set labels and limits
    graph.set_xlabel(r"$f [\si{\mega\hertz}]$")
    graph.set_ylabel("signal strength")
    graph.set_xlimits(0, 100)
    graph.set_ylimits(0, 5)

    # set scale: 1cm equals 10 units along the x-axis
    graph.set_xscale(cm=10)
    # set scale: 1cm equals 1 unit along the y-axis
    graph.set_yscale(cm=1)

    # set ticks at every unit along the y axis
    graph.set_yticks(range(6))

    # set graph paper
    graph.use_graph_paper()

    # save graph to file
    graph.save('mm_paper')
Example #11
0
def plot_traces():

    with tables.open_file(DATA, 'r') as data:
        for i, pre, coin, post in TIME_WINDOWS:
            test_node = data.get_node('/t%d' % i)
            events = test_node.events.read()
            events.sort(order='ext_timestamp')
            blobs = test_node.blobs
            for e_idx in [0, 1]:
                t_idx = events[e_idx]['traces'][1]
                extts = events[e_idx]['ext_timestamp']
                try:
                    trace = zlib.decompress(blobs[t_idx]).split(',')
                except zlib.error:
                    trace = zlib.decompress(blobs[t_idx][1:-1]).split(',')
                if trace[-1] == '':
                    del trace[-1]
                trace = [int(x) for x in trace]
                plot = Plot()
                plot.plot(range(len(trace)), trace, mark=None)
                plot.set_label('%d' % extts)
                microsec_to_sample = 400
                plot.draw_vertical_line(pre * microsec_to_sample,
                                        linestyle='thick,red,semitransparent')
                plot.draw_vertical_line((pre + coin) * microsec_to_sample,
                                        linestyle='thick,blue,semitransparent')
                plot.set_ylabel('Signal strength [ADCcounts]')
                plot.set_xlabel('Sample [2.5ns]')
                plot.set_ylimits(min=150, max=1500)
                plot.set_xlimits(min=0, max=len(trace))
                plot.save_as_pdf('trace_%d_%d' % (i, e_idx))
Example #12
0
def analyse(name):
    data = genfromtxt('data/%s.tsv' % name, delimiter='\t', dtype=None,
                      names=['ext_timestamp', 'time_delta'])
    time_delta = data['time_delta']

    # Plot distribution
    counts, bins = histogram(time_delta, bins=arange(-10.5, 11.5, 1))
    plot = Plot()
    plot.histogram(counts, bins)
    x = (bins[1:] + bins[:-1]) / 2.
    popt, pcov = curve_fit(gauss, x, counts, p0=(sum(counts), 0., 2.5))
    plot.plot(x, gauss(x, *popt), mark=None)
    print popt
    plot.set_ylimits(min=0)
    plot.set_ylabel('Counts')
    plot.set_xlabel(r'Time delta [\si{\nano\second}]')
    plot.save_as_pdf(name)

    # Plot moving average
    n = 5000
    skip = 100
    moving_average = convolve(time_delta, ones((n,)) / n, mode='valid')
    plot = Plot()
    timestamps = (data['ext_timestamp'][:-n + 1:skip] -
                  data['ext_timestamp'][0]) / 1e9 / 3600.
    plot.plot(timestamps, moving_average[::skip], mark=None)
    plot.set_xlimits(min=0)
    plot.set_ylabel(r'time delta [\si{\nano\second}]')
    plot.set_xlabel('timestamp [\si{\hour}]')
    plot.save_as_pdf('moving_average_%s' % name)
Example #13
0
def plot_pulseheight_histogram(data):
    events = data.root.hisparc.cluster_kascade.station_601.events
    ph = events.col('n1')

    s = landau.Scintillator()
    mev_scale = 3.38 / 1.
    count_scale = 6e3 / .32

    n, bins = histogram(ph, bins=arange(0, 9, 0.025))
    x = linspace(0, 9, 1500)

    plot = Plot()
    n_trunc = where(n <= 100000, n, 100000)
    plot.histogram(n_trunc, bins, linestyle='gray')

    plot.plot(x,
              s.conv_landau_for_x(x,
                                  mev_scale=mev_scale,
                                  count_scale=count_scale,
                                  gauss_scale=.68),
              mark=None)
    #     plot.add_pin('convolved Landau', x=1.1, location='above right',
    #                   use_arrow=True)

    plot.plot(x,
              count_scale * s.landau_pdf(x * mev_scale),
              mark=None,
              linestyle='black')
    #     plot.add_pin('Landau', x=1., location='above right', use_arrow=True)

    plot.set_xlabel(r"Number of particles")
    plot.set_ylabel(r"Number of events")
    plot.set_xlimits(0, 9)
    plot.set_ylimits(0, 21000)
    plot.save_as_pdf("plot_pulseheight_histogram_pylandau")
Example #14
0
def plot_fit(x, data, slope, intercept, pair):
    plot = Plot()
    plot.scatter(x, log(c))
    plot.plot(x, x * slope + intercept, mark=None)
    plot.set_ylimits(min=0)
    plot.set_label(r'%.1e \si{\hertz}' % rate)
    plot.save_as_pdf('intervals/intervals_%d_%d_r' % pair)
Example #15
0
def plot_offset_timeline(ref_station, station):
    ref_s = Station(ref_station)
    s = Station(station)
    #         ref_gps = ref_s.gps_locations
    #         ref_voltages = ref_s.voltages
    #         ref_n = get_n_events(ref_station)
    #         gps = s.gps_locations
    #         voltages = s.voltages
    #         n = get_n_events(station)
    # Determine offsets for first day of each month
    #         d_off = s.detector_timing_offsets
    s_off = get_station_offsets(ref_station, station)
    graph = Plot(width=r'.6\textwidth')
    #         graph.scatter(ref_gps['timestamp'], [95] * len(ref_gps), mark='square', markstyle='purple,mark size=.5pt')
    #         graph.scatter(ref_voltages['timestamp'], [90] * len(ref_voltages), mark='triangle', markstyle='purple,mark size=.5pt')
    #         graph.scatter(gps['timestamp'], [85] * len(gps), mark='square', markstyle='gray,mark size=.5pt')
    #         graph.scatter(voltages['timestamp'], [80] * len(voltages), mark='triangle', markstyle='gray,mark size=.5pt')
    #         graph.shade_region(n['timestamp'], -ref_n['n'] / 1000, n['n'] / 1000, color='lightgray,const plot')
    #         graph.plot(d_off['timestamp'], d_off['d0'], markstyle='mark size=.5pt')
    #         graph.plot(d_off['timestamp'], d_off['d2'], markstyle='mark size=.5pt', linestyle='green')
    #         graph.plot(d_off['timestamp'], d_off['d3'], markstyle='mark size=.5pt', linestyle='blue')
    graph.plot(s_off['timestamp'],
               s_off['offset'],
               mark='*',
               markstyle='mark size=1.25pt',
               linestyle=None)
    graph.set_ylabel('$\Delta t$ [ns]')
    graph.set_xlabel('Date')
    graph.set_xticks(
        [datetime_to_gps(date(y, 1, 1)) for y in range(2010, 2016)])
    graph.set_xtick_labels(['%d' % y for y in range(2010, 2016)])
    graph.set_xlimits(1.25e9, 1.45e9)
    graph.set_ylimits(-150, 150)
    graph.save_as_pdf('plots/offsets/offsets_ref%d_%d' %
                      (ref_station, station))
Example #16
0
def plot_min_max(variable_pairs):
    plot = Plot()
    variable_pairs = sorted(variable_pairs)
    for i, minmax_d in enumerate(variable_pairs):
        plot.plot([i, i], minmax_d, mark=None)
    plot.set_xlabel('Station pair')
    plot.set_xtick_labels([' '])
    plot.set_ylabel(r'Distance between stations [\si{\meter}]')
    plot.save_as_pdf('min_max_distances')
Example #17
0
def plot_filtered(filtered_trace):
    plot = Plot()

    time = arange(0, len(filtered_trace) * 2.5, 2.5)
    plot.plot(time, filtered_trace, mark=None, linestyle='const plot')

    plot.set_xlabel(r'Trace time [\si{\ns}]')
    plot.set_ylabel(r'Signal strength [ADC]')
    plot.save_as_pdf('mean_filter')
Example #18
0
 def plot_derrivative_pmt(self):
     plot = Plot()
     plot.plot(self.lin_bins, self.dvindvout, mark=None)
     plot.set_xlimits(min=self.lin_bins[0], max=self.lin_bins[-1])
     plot.set_xlabel(r'Particle density [\si{\per\meter\squared}]')
     plot.set_ylabel(
         r'$\sigma V_{\mathrm{in}}\frac{\mathrm{d}V_{\mathrm{out}}}'
         r'{\mathrm{d}V_{\mathrm{in}}}$')
     plot.save_as_pdf('plots/derrivative_pmt_saturation')
Example #19
0
def main():
    x, t25, t50, t75 = np.loadtxt('data/DIR-boxplot_arrival_times-1.txt')

    graph = Plot()
    graph.plot(x, t50, mark='*')
    graph.shade_region(x, t25, t75)
    graph.set_xlabel(r"Core distance [\si{\meter}]")
    graph.set_ylabel(r"Arrival time delay [\si{\nano\second}]")
    graph.set_ylimits(min=0)
    graph.save('shower-front')
Example #20
0
def make_logo():
    size = '.02\linewidth'
    x = arange(0, 2*pi, .01)
    y = sin(x)
    plot = Plot(width=size, height=size)
    plot.set_ylimits(-1.3, 1.3)
    plot.set_yticks([-1, 0, 1])
    plot.set_ytick_labels(['', '', ''])
    plot.set_xticks([0, pi, 2*pi])
    plot.set_xtick_labels(['', '', ''])
    plot.plot(x, y, mark=None, linestyle='thick')
    plot.set_axis_options("axis line style=thick, major tick length=.04cm")
    plot.save_as_pdf('logo')
Example #21
0
def plot_traces(traces, label='', raw=False):
    """Plot traces

    Does not take different mV/ADC for HiSPARC II-III into account!

    :param traces: list of lists of trace values.
    :param label: name (suffix) for the output pdf.

    """
    colors = ['black', 'red', 'black!40!green', 'blue']
    plot = Plot(width=r'.6\textwidth')
    times = arange(0, len(traces[0]) * 2.5, 2.5)
    for i, trace in enumerate(traces):
        if not raw:
            if max(trace) * 0.57 < 500:
                use_milli = True
                trace = [t * -0.57 for t in trace]
            else:
                use_milli = False
                trace = [t * -0.57 / 1e3 for t in trace]
        plot.plot(times, trace, linestyle='%s, thin' % colors[i], mark=None)
    if len(traces[0]) == 2400 and raw:
        plot.add_pin_at_xy(500,
                           10,
                           'pre-trigger',
                           location='below',
                           use_arrow=False)
        plot.add_pin_at_xy(1750,
                           10,
                           'trigger',
                           location='below',
                           use_arrow=False)
        plot.add_pin_at_xy(4250,
                           10,
                           'post-trigger',
                           location='below',
                           use_arrow=False)
        plot.draw_vertical_line(1000, 'gray')
        plot.draw_vertical_line(2500, 'gray')
    if raw:
        plot.set_ylabel(r'Signal strength [ADCcounts]')
    elif use_milli:
        plot.set_ylabel(r'Signal strength [\si{\milli\volt}]')
    else:
        plot.set_ylabel(r'Signal strength [\si{\volt}]')
    plot.set_xlabel(r'Event time [\si{\ns}]')
    plot.set_xlimits(0, times[-1])
    plot.set_axis_options('line join=round')
    plot.save_as_pdf('trace_' + label)
Example #22
0
def plot_front_shapes():
    r = [20, 29, 41, 58, 84, 120, 171, 245, 350, 501]
    fit_r = arange(0, 510, 5)
    for particle in ['gamma', 'proton', 'iron']:
        for energy in ['15.0', '15.5', '16.0', '16.5', '17.0']:
            files = glob(PATH + '%s_E_%s*' % (particle, energy))
            if not len(files):
                continue

            t = zeros((len(r), len(files)))

            for i, file in enumerate(files):
                detected_t = loadtxt(file, usecols=(1, ))
                t[:, i][:len(detected_t)] = detected_t

            t_src = t.copy()
            for j in range(1, len(t)):
                t[j] -= t[0]
            t[0] -= t[0]
            mean_t = t.mean(axis=1)
            try:
                min_limit = 3
                min_efficiency = 0.9
                limit = min_limit + next(
                    i for i, ti in enumerate(t_src[min_limit:])
                    if not count_nonzero(ti) > min_efficiency * len(files))
            except:
                limit = len(r)

            plot = Plot()
            plot.scatter(r[:limit],
                         mean_t[:limit],
                         yerr=t.std(axis=1)[:limit],
                         xerr=[10] * limit)
            plot.scatter(r[:limit], median(t, axis=1)[:limit], mark='x')

            popt, pcov = curve_fit(front_shape, r[:limit], mean_t[:limit])

            plot.plot(fit_r,
                      front_shape(fit_r, *popt),
                      linestyle='gray',
                      mark=None)
            print particle, energy, popt
            plot.set_ylimits(-10, 130)
            plot.set_xlimits(-10, 510)
            plot.set_ylabel(r'Delay [\si{\ns}]')
            plot.set_xlabel(r'Core distance [\si{\meter}]')
            plot.save_as_pdf('plots/front_shape/%s_%s.pdf' %
                             (particle, energy))
Example #23
0
def plot_contributions():
    colors = ['red', 'blue', 'green', 'purple', 'gray', 'brown', 'cyan',
              'magenta', 'orange', 'teal']
    lamb = arange(MIN, MAX, 0.1)
    plot = Plot('semilogy')

    for j, k in enumerate(range(1, 8) + [15] + [20]):
        ks = [k]  # arange(k - 0.5, k + 0.5, 0.2)
        p = sum(density_probability(lamb, ki) for ki in ks) / len(ks)
        plot.plot(lamb, p, linestyle=colors[j % len(colors)], mark=None)
    plot.set_ylimits(min=0.01)
    plot.set_xlimits(0, 20)
    plot.set_xlabel('Expected actual number of particles')
    plot.set_ylabel('Probability')
    plot.save_as_pdf('plots/poisson_distributions')
Example #24
0
def plot_compared():
    popt, perr = fit_curve(senstech_m_ph, senstech_e_ph)
    fit = FIT % (popt[0], P1, popt[1])

    plot = Plot(width=r'.67\linewidth', height=r'.67\linewidth')
    plot.set_label(fit, location='upper left')
    plot.scatter(senstech_e_ph, senstech_m_ph, mark='*')
    plot.scatter(nikhef_e_ph, nikhef_m_ph, mark='o')
    inputs = linspace(min(senstech_m_ph), max(senstech_m_ph), 500)
    plot.plot(ice_cube_pmt_p1(inputs, *popt), inputs, mark=None)
    plot.plot([0, 6], [0, 6], mark=None, linestyle='gray')
    plot.set_xlimits(0, 6)
    plot.set_ylimits(0, 6)
    plot.set_axis_equal()
    plot.set_xlabel(r'Sum individual LED pulseheights [\si{\volt}]')
    plot.set_ylabel(r'Multiple-LED pulseheight [\si{\volt}]')
    plot.save_as_pdf('plots/linearity_compared')
Example #25
0
def scatter_n():
    r = 420
    with tables.open_file(RESULT_PATH, 'r') as data:
        cluster = data.root.coincidences._v_attrs.cluster
        coincidences = data.root.coincidences.coincidences
        graph = Plot()
        for n in range(0, len(cluster.stations) + 1):
            c = coincidences.read_where('N == n')
            if len(c) == 0:
                continue
            graph.plot(c['x'],
                       c['y'],
                       mark='*',
                       linestyle=None,
                       markstyle='mark size=.2pt,color=%s' %
                       COLORS[n % len(COLORS)])
            graph1 = Plot()
            graph1.plot(c['x'],
                        c['y'],
                        mark='*',
                        linestyle=None,
                        markstyle='mark size=.2pt')
            plot_cluster(graph1, cluster)
            graph1.set_axis_equal()
            graph1.set_ylimits(-r, r)
            graph1.set_xlimits(-r, r)
            graph1.set_ylabel('y [m]')
            graph1.set_xlabel('x [m]')
            graph1.set_title('Showers that caused triggers in %d stations' % n)
            graph1.save_as_pdf('N_%d' % n)

            graph_azi = PolarPlot(use_radians=True)
            plot_azimuth(graph_azi, c['azimuth'])
            graph_azi.set_label('N = %d' % n)
            graph_azi.save('azi_%d' % n)
            graph_azi.save_as_pdf('azi_%d' % n)

        plot_cluster(graph, cluster)
        graph.set_axis_equal()
        graph.set_ylimits(-r, r)
        graph.set_xlimits(-r, r)
        graph.set_ylabel('y [m]')
        graph.set_xlabel('x [m]')
        graph.set_title('Color indicates the number triggered stations by '
                        'a shower.')
        graph.save_as_pdf('N')
Example #26
0
def plot_delta_histogram(ids, **kwargs):
    """ Plot a histogram of the deltas

    """
    if type(ids) is int:
        ids = [ids]

    # Bin width
    bin_size = 1  # 2.5*n

    # Begin Figure
    plot = Plot()
    for id in ids:
        ext_timestamps, deltas = get(id)
        low = floor(min(deltas))
        high = ceil(max(deltas))
        bins = np.arange(low - .5 * bin_size, high + bin_size, bin_size)
        n, bins = np.histogram(deltas, bins)
        bin_centers = (bins[:-1] + bins[1:]) / 2
        popt, pcov = curve_fit(gauss,
                               bin_centers,
                               n,
                               p0=[.15, np.mean(deltas),
                                   np.std(deltas)])
        plot.histogram(n, bins)
        plot.plot(bin_centers,
                  gauss(bin_centers, *popt),
                  mark=None,
                  linestyle='gray')
    if kwargs.keys():
        plot.set_title('Tijdtest ' + kwargs[kwargs.keys()[0]])
    plot.set_label(r'$\mu={1:.1f}$, $\sigma={2:.1f}$'.format(*popt))
    plot.set_xlabel(r'Time difference [ns]')
    plot.set_ylabel(r'Counts')
    plot.set_xlimits(low, high)
    plot.set_ylimits(min=0.)

    # Save Figure
    if len(ids) == 1:
        name = 'delta_histogram/tt_delta_hist_%03d' % ids[0]
    elif kwargs.keys():
        name = 'delta_histogram/tt_delta_hist_' + kwargs[kwargs.keys()[0]]
    plot.save_as_pdf(PLOT_PATH + name)

    print 'tt_analyse: Plotted histogram'
Example #27
0
def main():
    plot = Plot()

    size = 20
    x = np.linspace(1, 20, size)
    y = np.linspace(10, 50, size)
    y_random = y + np.random.uniform(-3, 1, size)

    err_l = np.random.uniform(0, 2, size)
    err_h = np.random.uniform(1, 5, size)
    err_x = [0.4] * size

    plot.plot(x, y, mark=None)
    plot.scatter(x, y_random, xerr=err_x, yerr=list(zip(err_l, err_h)))

    plot.set_xlabel("Value with symmetric error")
    plot.set_ylabel("Other value with asymmetric errors")
    plot.save("error_bars")
Example #28
0
def plot_luminosity(timestamp, aligned_data, aligned_data_all, i):

    n_active_aligned = (aligned_data != 0).sum(axis=0)
    cumsummed_data_all = aligned_data_all.sum(axis=0).cumsum()
    summed_data = aligned_data.sum(axis=0)
    cumsummed_data = summed_data.cumsum()

    plot = Plot(width=r'.5\textwidth')
    #     plot.plot([t / 1e9 for t in timestamp[::100]], cumsummed_data_all[::100],
    #               linestyle='black!50!green, thick', mark=None)
    plot.plot([t / 1e9 for t in timestamp[::100]],
              cumsummed_data[::100],
              linestyle='thick',
              mark=None)
    plot.set_xticks([datetime_to_gps(date(y, 1, 1)) / 1e9 for y in YEARS[::3]])
    plot.set_xtick_labels(['%d' % y for y in YEARS[::3]])
    plot.set_ylabel('Cummulative number of events')
    plot.set_xlabel('Date')
    plot.save_as_pdf('luminosity_%s' % ['network', 'spa'][i])
Example #29
0
def plot_ranges():
    k = arange(26)
    p_low = [percentile_low_density_for_n(ki) for ki in k]
    p_median = [median_density_for_n(ki) for ki in k]
    p_mean = [mean_density_for_n(ki) for ki in k]
#     p_mpv = [most_probable_density_for_n(ki) for ki in k]
    p_high = [percentile_high_density_for_n(ki) for ki in k]
    plot = Plot(height=r'\defaultwidth')
    plot.plot([0, 1.5 * max(k)], [0, 1.5 * max(k)], mark=None, linestyle='dashed')
    plot.scatter(k, p_median)
#     plot.plot(k, p_mean, mark=None, linestyle='green')
#     plot.plot(k, p_mpv, mark=None, linestyle='red')
    plot.shade_region(k, p_low, p_high)
    plot.set_xlimits(min(k) - 0.05 * max(k), 1.05 * max(k))
    plot.set_ylimits(min(k) - 0.05 * max(k), 1.05 * max(k))
    plot.set_axis_equal()
    plot.set_xlabel('Detected number of particles')
    plot.set_ylabel('Expected actual number of particles')
    plot.save_as_pdf('plots/poisson_ranges')
Example #30
0
def plot_effiencies():
    efficiencies, errors = collect_efficiencies()

    for energy in efficiencies.keys():
        plot = Plot('semilogx')
        for i, zenith in enumerate(sorted(efficiencies[energy].keys())):
            if any(abs(zenith - z) < 0.1 for z in [0, 22.5, 37.5]):
                plot.plot(CORE_DISTANCES, efficiencies[energy][zenith],
                          # yerr=errors[energy][zenith],
                          markstyle='mark size=1pt', linestyle='blue')
                plot.add_pin(str(zenith), x=15, use_arrow=True)
            else:
                plot.plot(CORE_DISTANCES, efficiencies[energy][zenith], mark=None)
        plot_david_data(plot)
        plot.set_ylabel('Efficiency')
        plot.set_ylimits(min=0, max=1.02)
        plot.set_xlimits(min=2, max=500)
        plot.set_xlabel('Core distance')
        plot.save_as_pdf('efficiency_%s_%.1f.pdf' % (STATION_TYPE[STATION_NUMBER], energy))
Example #31
0
def plot_integral(trace, baseline):
    plot = Plot()

    time = arange(0, len(trace) * 2.5, 2.5)
    plot.plot(time, trace, mark=None, linestyle='const plot')
    integral_trace = where(trace > baseline + BASELINE_THRESHOLD, trace,
                           baseline)
    plot.shade_region(time + 2.5, [baseline] * len(trace),
                      integral_trace,
                      color='lightgray, const plot')

    plot.draw_horizontal_line(baseline, linestyle='densely dashed, gray')
    plot.draw_horizontal_line(baseline + BASELINE_THRESHOLD,
                              linestyle='densely dotted, gray')
    plot.draw_horizontal_line(max(trace), linestyle='densely dashed, gray')

    #     plot.set_ylimits(0)
    plot.set_xlabel(r'Trace time [\si{\ns}]')
    plot.set_ylabel(r'Signal strength [ADC]')
    plot.save_as_pdf('integral')
Example #32
0
def plot_detector_offsets(offsets, type='month'):
    d1, d2, d3, d4 = zip(*offsets)
    x = range(len(d1))
    graph = Plot()
    graph.plot(x, d1, markstyle='mark size=.5pt')
    graph.plot(x, d2, markstyle='mark size=.5pt', linestyle='red')
    graph.plot(x, d3, markstyle='mark size=.5pt', linestyle='green')
    graph.plot(x, d4, markstyle='mark size=.5pt', linestyle='blue')
    graph.set_ylabel('$\Delta t$ [ns]')
    graph.set_xlabel('Date')
    graph.set_xlimits(0, max(x))
    graph.set_ylimits(-LIMITS, LIMITS)
    graph.save_as_pdf('detector_offset_drift_%s_%d' % (type, station))
Example #33
0
    def plot_pmt_curves(self):
        plot = Plot('loglog')
        filter = self.ref_out < 50

        for i in range(4):
            filter2 = self.ref_in_i[:, i] < 500
            pin = self.ref_in_i[:, i].compress(filter & filter2)
            pout = self.ref_out.compress(filter & filter2)
            plot.plot(pout, pin, linestyle=COLORS[i], mark=None)

        filter2 = self.ref_in < 500
        pin = self.ref_in.compress(filter & filter2)
        pout = self.ref_out.compress(filter & filter2)
        plot.plot(pout, pin, linestyle='pink', mark=None)

        plot.set_ylimits(min=min(self.lin_bins), max=max(self.lin_bins))
        plot.set_xlimits(min=min(self.lin_bins), max=max(self.lin_bins))
        plot.set_ylabel(r'Input signal')
        plot.set_xlabel(r'Output signal')
        plot.save_as_pdf('plots/pmt_curves')
Example #34
0
def scatter_n():
    with tables.open_file(RESULT_PATH, 'r') as data:
        cluster = data.root.coincidences._v_attrs.cluster
        coincidences = data.root.coincidences.coincidences
        for n in range(0, len(cluster.stations) + 1):
            graph = Plot()
            c = coincidences.read_where('N == n')
            print 'N = %d: %d' % (n, len(c))
            graph.plot(c['x'],
                       c['y'],
                       mark='*',
                       linestyle=None,
                       markstyle='mark size=.3pt')
            plot_cluster(graph, cluster)
            r = 520
            graph.set_ylimits(-r, r)
            graph.set_xlimits(-r, r)
            graph.set_ylabel('y (m)')
            graph.set_xlabel('x (m)')
            graph.save_as_pdf('N_%d' % n)
Example #35
0
def main():
    locations = np.genfromtxt(
        'data/SP-DIR-plot_sciencepark_cluster-detectors.txt',
        names=['x', 'y'])
    stations = np.genfromtxt(
        'data/SP-DIR-plot_sciencepark_cluster-stations.txt',
        names=['id', 'x', 'y'])

    graph = Plot()

    graph.scatter(locations['x'], locations['y'])
    graph.set_axis_equal()

    locations = ['right'] * len(stations)
    locations[0] = 'left'
    locations[5] = 'above right'
    locations = iter(locations)
    for num, x, y in stations:
        graph.add_pin_at_xy(x, y, int(num), location=next(locations),
                            use_arrow=False, style='gray,label distance=1ex')

    x = [stations['x'][u] for u in [0, 2, 5]]
    y = [stations['y'][u] for u in [0, 2, 5]]
    x.append(x[0])
    y.append(y[0])
    graph.plot(x, y, mark=None, linestyle='dashed')

    graph.add_pin_at_xy([x[0], x[1]], [y[0], y[1]], r'\SI{128}{\meter}',
                        relative_position=.4, location='below right',
                        use_arrow=False)
    graph.add_pin_at_xy([x[0], x[2]], [y[0], y[2]], r'\SI{151}{\meter}',
                        relative_position=.5, location='left',
                        use_arrow=False)
    graph.add_pin_at_xy([x[2], x[1]], [y[2], y[1]], r'\SI{122}{\meter}',
                        relative_position=.5, location='above right',
                        use_arrow=False)

    graph.set_xlabel(r"Distance [\si{\meter}]")
    graph.set_ylabel(r"Distance [\si{\meter}]")

    graph.save('sciencepark')
Example #36
0
def main():
    x = np.arange(10)
    y = (x / 2.0) - 3.0
    colors = ["black", "red", "blue", "yellow", "purple"]
    plot = Plot()

    for i in range(5):
        plot.plot(x, y - i, mark="", linestyle=colors[i])

    plot.set_axis_options(
        "yticklabel pos=right,\n"
        "grid=major,\n"
        "legend entries={$a$,[red]$b$,[green]$c$,$d$,$a^2$},\n"
        "legend pos=north west"
    )

    plot.set_xlabel("Something important")
    plot.set_ylabel("A related thing")
    plot.save("any_option")

    x = np.linspace(0.6 * np.pi, 10 * np.pi, 150)
    y = np.sin(x) / x
    plot = MultiPlot(1, 2, width=r".4\linewidth", height=r".25\linewidth")

    subplot = plot.get_subplot_at(0, 0)
    subplot.plot(x, y, mark=None)

    subplot = plot.get_subplot_at(0, 1)
    subplot.plot(x, y, mark=None)

    plot.show_xticklabels_for_all([(0, 0), (0, 1)])
    plot.show_yticklabels(0, 1)
    plot.set_axis_options(0, 1, "yticklabel pos=right, grid=major")

    plot.set_axis_options_for_all(None, r"enlargelimits=false")

    plot.set_xlabel("Something important")
    plot.set_ylabel("A related thing")
    plot.save("multi_any_option")
Example #37
0
def main():
    # Draw random numbers from the normal distribution
    np.random.seed(1)
    N = np.random.normal(size=2000)

    # define bin edges
    edge = 5
    bin_width = .1
    bins = np.arange(-edge, edge + .5 * bin_width, bin_width)

    # build histogram and x, y values at the center of the bins
    n, bins = np.histogram(N, bins=bins)
    x = (bins[:-1] + bins[1:]) / 2
    y = n

    # fit normal distribution pdf to data
    f = lambda x, N, mu, sigma: N * scipy.stats.norm.pdf(x, mu, sigma)
    popt, pcov = scipy.optimize.curve_fit(f, x, y)
    print("Parameters from fit (N, mu, sigma):", popt)

    # make graph
    graph = Plot()

    # graph histogram
    graph.histogram(n, bins)

    # graph model with fit parameters
    x = np.linspace(-edge, edge, 100)
    graph.plot(x, f(x, *popt), mark=None)

    # set labels and limits
    graph.set_xlabel("value")
    graph.set_ylabel("count")
    graph.set_label("Fit to data")
    graph.set_xlimits(-6, 6)

    # save graph to file
    graph.save('histogram-fit')
Example #38
0
def main():
    gamma = np.genfromtxt('data/showere15-proton.t2001', usecols=(1, 2))
    e = np.genfromtxt('data/showere15-proton.t2205', usecols=(1, 2))
    mu = np.genfromtxt('data/showere15-proton.t2207', usecols=(1, 2))

    graph = Plot(axis='loglog')

    graph.plot(gamma[:, 0], gamma[:, 1], mark=None)
    graph.add_pin(r'$\gamma$')

    graph.plot(e[:, 0], e[:, 1], mark=None)
    graph.add_pin('e')

    graph.plot(mu[:, 0], mu[:, 1], mark=None)
    graph.add_pin(r'$\mu$')

    graph.set_xlabel(r"Core distance [\si{\meter}]")
    graph.set_ylabel(r"Particle density [\si{\per\square\meter}]")
    graph.set_logyticks(range(-6, 3, 2))
    graph.save('eas-lateral')
Example #39
0
def main():
    leap = np.genfromtxt('data/leap-prot.dat', delimiter=',',
                         usecols=(0, 1), names=['E', 'F'])
    leap['E'] *= 1e6
    leap['F'] *= 1e3 * 2

    proton = read_data('data/proton', 1, 0)
    akeno_new_lo = read_data('data/akeno-new-lo', 0, 1)
    flys_eye = read_data('data/fe-new', 0, 1)
    yakutsk = read_data('data/yakustk', 1, 0)
    haverah = read_data('data/haverah', 1, 0)

    graph = Plot(axis='loglog', width=r'.5\linewidth', height=r'.65\linewidth')

    graph.plot(leap['E'], leap['F'], mark=None)
    graph.add_pin('LEAP', 'above right', use_arrow=True,
                  relative_position=.5)
    graph.plot(proton['E'], proton['F'], mark=None)
    graph.add_pin('PROTON', 'above right', use_arrow=True,
                  relative_position=.5)
    graph.plot(akeno_new_lo['E'], akeno_new_lo['F'], mark=None)
    graph.add_pin('AGASA', 'above right', use_arrow=True,
                  relative_position=.5)

    graph.plot(yakutsk['E'], yakutsk['F'], mark=None)
    graph.add_pin('Yakutsk', 'below left', use_arrow=True,
                  relative_position=.55)
    graph.plot(haverah['E'], haverah['F'], mark=None)
    graph.add_pin('Haverah Park', 'below left', use_arrow=True,
                  relative_position=.85)
    graph.plot(flys_eye['E'], flys_eye['F'], mark=None)
    graph.add_pin("Fly's Eye", 'below left', use_arrow=True,
                  relative_position=1.0)

    graph.set_xlabel(r"Energy [\si{\electronvolt}]")
    graph.set_ylabel(r"Flux [\si{\per\square\meter\per\steradian"
                     "\per\second\per\giga\electronvolt}]")

    x = np.logspace(11, 17)
    graph.plot(x, 1.5e29 * x ** -2.75, mark=None, linestyle='dashed')

    graph.set_logxticks(range(6, 22, 3))
    graph.save('spectrum')
Example #40
0
        if x > 0.0:
            return 1.0
    return 2 * (H(x / L) - H(x / L - 1)) - 1


def fourier(x, N):
    ''' fourier approximation with N terms'''
    term = 0.0
    for n in range(1, N, 2):
        term += (1.0 / n) * math.sin(n * math.pi * x / L)
    return (4.0 / (math.pi)) * term


X     = npy.linspace(0.0, 2 * L, num=1000)
Y_sqr = [square(x) for x in X]
Y     = lambda n: [fourier(x, n) for x in X]

graph = Plot()
graph.set_title("Fourier approximation")

graph.plot(x=X, y=Y( 3), linestyle='red'   , mark=None, legend='n=3' )
graph.plot(x=X, y=Y( 5), linestyle='yellow', mark=None, legend='n=5' )
graph.plot(x=X, y=Y( 8), linestyle='green' , mark=None, legend='n=8' )
graph.plot(x=X, y=Y(13), linestyle='blue'  , mark=None, legend='n=13')
#graph.plot(x=X, y=Y(21), linestyle='violet', mark=None, legend='n=21')
#graph.plot(x=X, y=Y(34), linestyle='violet', mark=None, legend='n=34')
graph.plot(x=X, y=Y(55), linestyle='cyan'  , mark=None, legend='n=55')
graph.plot(x=X, y=Y_sqr, linestyle='black' , mark=None, legend='square')

graph.save_as_pdf('plot')
    q = int(0.25 * len(y))
    y = y[q:2*q]
    max_index = q + np.argmax(y)
    max_x = x[max_index]
    plot.add_pin(label, x=max_x, location='above', use_arrow=True,
                 style='pin distance=%s' % distance)


X = np.linspace(0., 2 * L, num=1000)
Y_sqr = [square(x) for x in X]
Y = lambda n: [fourier(x, n) for x in X]

graph = Plot()
graph.set_title("Fourier approximation")

graph.plot(x=X, y=Y(3), linestyle='red', mark=None, legend='n=3')
graph.plot(x=X, y=Y(5), linestyle='yellow', mark=None, legend='n=5')
graph.plot(x=X, y=Y(8), linestyle='green', mark=None, legend='n=8')
graph.plot(x=X, y=Y(13), linestyle='blue', mark=None, legend='n=13')
graph.plot(x=X, y=Y(55), linestyle='cyan', mark=None, legend='n=55')
graph.plot(x=X, y=Y_sqr, linestyle='black', mark=None, legend='square')

graph.save('fourier_with_legend')

graph = Plot()
graph.set_title("Fourier approximation")

graph.plot(x=X, y=Y(3), mark=None, linestyle='black!20')
add_custom_pin(graph, X, Y(3), 3)
graph.plot(x=X, y=Y(5), mark=None, linestyle='black!30')
add_custom_pin(graph, X, Y(5), 5)
def main():
    plot = Plot(width=r'.5\linewidth', height=r'.5\linewidth')
    r = linspace(1, 5, 100)
    phi = linspace(0, 4.5 * pi, 100)
    x = r * cos(phi)
    y = r * sin(phi)
    plot.plot(x, y, mark=None)
    plot.add_pin('start', relative_position=0, use_arrow=True)
    plot.add_pin('half', relative_position=.5, use_arrow=True)
    plot.add_pin('46\%', relative_position=.46, use_arrow=True,
                 location='above')
    plot.add_pin('end', relative_position=1, use_arrow=True, location='below')

    phi = linspace(0, 2 * pi, 10)
    x = 6 * cos(phi)
    y = 6 * sin(phi)
    plot.plot(x, y, mark=None, linestyle='thick, gray')
    plot.add_pin('start', relative_position=0, use_arrow=True,
                 location='above right')
    plot.add_pin('half', relative_position=.5, use_arrow=True,
                 location='above left')
    plot.add_pin('70\%', relative_position=.7, use_arrow=True,
                 location='below')
    plot.add_pin('end', relative_position=1, use_arrow=True,
                 location='below right')

    plot.plot([-5, 2, 5], [-7.5, -7.5, -7.5], linestyle='lightgray')
    plot.add_pin('50\%', relative_position=.5, use_arrow=True,
                 location='above right')

    plot.set_xlimits(-8, 8)
    plot.set_ylimits(-8, 8)
    plot.save('relative_pin')

    # With one logarithmic axis
    plot = Plot(axis='semilogy')

    x = [2, 2, 2]
    y = [1, 10, 100]
    plot.plot(x, y)
    for xi, yi in zip(x, y):
        plot.add_pin_at_xy(xi, yi, '(%d,%d)' % (xi, yi),
                           location='below right')
    plot.add_pin('half', relative_position=.5, use_arrow=True,
                 location='right')

    x = [4, 5, 6]
    y = [3, 3, 3]
    plot.plot(x, y)
    for xi, yi in zip(x, y):
        plot.add_pin_at_xy(xi, yi, '(%d,%d)' % (xi, yi), location='below')
    plot.add_pin('half', relative_position=.5, use_arrow=True,
                 location='above')

    x = [3, 4, 5]
    y = [1, 10, 100]
    plot.plot(x, y)
    for xi, yi in zip(x, y):
        plot.add_pin_at_xy(xi, yi, '(%d,%d)' % (xi, yi), location='above left')
    plot.add_pin('half', relative_position=.5, use_arrow=True,
                 location='right')

    plot.save('relative_pin_log')