Example #1
0
    class TestMatPipe(unittest.TestCase):
        def setUp(self):
            df = load_dataset("elastic_tensor_2015").rename(
                columns={"formula": "composition"})
            self.df = df[["composition", "K_VRH"]]
            self.df_struc = df[["composition", "structure", "K_VRH"]]
            self.extra_features = df["G_VRH"]
            self.target = "K_VRH"
            self.config = get_preset_config(config_preset, n_jobs=n_jobs)
            self.config_cached = get_preset_config(config_preset,
                                                   cache_src=CACHE_SRC,
                                                   n_jobs=n_jobs)
            self.pipe = MatPipe(**self.config)
            self.pipe_cached = MatPipe(**self.config_cached)

        @unittest.skipIf("transferability" in skip, reason)
        def test_transferability(self):
            df_train = self.df.iloc[:200]
            df_test = self.df.iloc[201:250]
            self.pipe.fit(df_train, self.target)
            df_test = self.pipe.predict(df_test)
            true = df_test[self.target]
            test = df_test[self.target + " predicted"]
            self.assertTrue("composition" not in df_test.columns)
            self.assertTrue(r2_score(true, test) > 0.5)

            # Use the same pipe object by refitting and reusing
            df_train2 = self.df.iloc[250:450]
            df_test2 = self.df.iloc[451:500]
            self.pipe.fit(df_train2, self.target)
            df_test2 = self.pipe.predict(df_test2)
            true2 = df_test2[self.target]
            test2 = df_test2[self.target + " predicted"]
            self.assertTrue("composition" not in df_test2.columns)
            self.assertTrue(r2_score(true2, test2) > 0.5)

        @unittest.skipIf("user_features" in skip, reason)
        def test_user_features(self):
            df = self.df
            df["G_VRH"] = self.extra_features
            self.assertTrue("G_VRH" in df.columns)
            self.assertTrue("K_VRH" in df.columns)
            df_train = df.iloc[:200]
            df_test = df.iloc[201:250]
            self.pipe.fit(df_train, self.target)

            # If shear modulus is included as a feature it should probably show up
            # in the final pipeline
            self.assertTrue("G_VRH" in self.pipe.learner.features)
            df_test = self.pipe.predict(df_test)
            true = df_test[self.target]
            test = df_test[self.target + " predicted"]
            self.assertTrue(r2_score(true, test) > 0.75)

        @unittest.skipIf("predict_kwargs" in skip, reason)
        def test_predict_kwargs(self):
            # Test mat_pipe.predict()'s ignore and output_col kwargs.
            df_train = self.df.iloc[:200]
            df_test = self.df.iloc[201:250]
            ef = "ExtraFeature"
            df_test[ef] = [i + 100 for i in range(df_test.shape[0])]
            self.pipe.fit(df_train, self.target)

            self.assertTrue(ef in df_test.columns)
            self.assertTrue("composition" in df_test.columns)

            ignore = [ef, "composition"]
            predicted_ignored = self.pipe.predict(df_test, ignore=ignore)
            self.assertTrue(ef in predicted_ignored.columns)
            self.assertTrue("composition" in predicted_ignored.columns)

            predicted_none = self.pipe.predict(df_test, ignore=None)
            self.assertFalse(ef in predicted_none.columns)
            self.assertFalse("composition" in predicted_none.columns)

            some = ["composition"]
            predicted_some = self.pipe.predict(df_test, ignore=some)
            self.assertFalse(ef in predicted_some.columns)
            self.assertTrue("composition" in predicted_some.columns)

            output_col_name = self.target + "_pred"
            predicted_custom_col = self.pipe.predict(
                df_test, output_col=output_col_name)
            self.assertTrue(output_col_name in predicted_custom_col)

        @unittest.skipIf("benchmarking" in skip, reason)
        def test_benchmarking_no_cache(self):
            pipe = self.pipe
            # Make sure we can't run a cached run with no cache AF and cache pipe
            with self.assertRaises(AutomatminerError):
                self._run_benchmark(cache=True, pipe=pipe)

            self._run_benchmark(cache=False, pipe=pipe)

        @unittest.skipIf("benchmarking" in skip, reason)
        def test_benchmarking_cache(self):
            pipe = self.pipe_cached

            # Make sure we can't run a cached run with no cache AF and cache pipe
            with self.assertRaises(AutomatminerError):
                self._run_benchmark(cache=False, pipe=pipe)
            self._run_benchmark(cache=True, pipe=pipe)

        @unittest.skipIf("persistence" in skip, reason)
        def test_persistence(self):
            with self.assertRaises(NotFittedError):
                self.pipe.save()
            df = self.df[-200:]
            self.pipe.fit(df, self.target)

            # Load test
            self.pipe.save(filename=PIPE_PATH)
            self.pipe = MatPipe.load(PIPE_PATH)
            df_test = self.pipe.predict(self.df[-220:-201])
            self.assertTrue(self.target in df_test.columns)
            self.assertTrue(self.target + " predicted" in df_test.columns)

            # Version test
            self.pipe.version = "not a real version"
            self.pipe.save(VERSION_PIPE_PATH)
            with self.assertRaises(AutomatminerError):
                MatPipe.load(VERSION_PIPE_PATH)

        @unittest.skipIf("digests" in skip, reason)
        def test_summarize_and_inspect(self):
            df = self.df[-200:]
            self.pipe.fit(df, self.target)

            for ext in AMM_SUPPORTED_EXTS:
                digest = self.pipe.inspect(filename=DIGEST_PATH + ext)
                self.assertTrue(os.path.isfile(DIGEST_PATH + ext))
                self.assertTrue(isinstance(digest, dict))

            for ext in AMM_SUPPORTED_EXTS:
                digest = self.pipe.summarize(filename=DIGEST_PATH + ext)
                self.assertTrue(os.path.isfile(DIGEST_PATH + ext))
                self.assertTrue(isinstance(digest, dict))

        def _run_benchmark(self, cache, pipe):
            # Test static, regular benchmark (no fittable featurizers)
            df = self.df.iloc[500:600]
            kfold = KFold(n_splits=2)
            df_tests = pipe.benchmark(df, self.target, kfold, cache=cache)
            self.assertEqual(len(df_tests), kfold.n_splits)

            # Make sure we retain a good amount of test samples...
            df_tests_all = pd.concat(df_tests)
            self.assertGreaterEqual(len(df_tests_all), 0.95 * len(df))

            # Test static subset of kfold
            df2 = self.df.iloc[500:550]
            df_tests2 = pipe.benchmark(df2,
                                       self.target,
                                       kfold,
                                       fold_subset=[0],
                                       cache=cache)
            self.assertEqual(len(df_tests2), 1)

        def tearDown(self) -> None:
            digests = [DIGEST_PATH + ext for ext in AMM_SUPPORTED_EXTS]
            for remnant in [CACHE_SRC, PIPE_PATH, VERSION_PIPE_PATH, *digests]:
                if os.path.exists(remnant):
                    os.remove(remnant)
Example #2
0
    def run_task(self, fw_spec):
        # Read data from fw_spec
        pipe_config_dict = fw_spec["pipe_config"]
        fold = fw_spec["fold"]
        kfold_config = fw_spec["kfold_config"]
        target = fw_spec["target"]
        data_file = fw_spec["data_file"]
        clf_pos_label = fw_spec["clf_pos_label"]
        problem_type = fw_spec["problem_type"]
        learner_name = pipe_config_dict["learner_name"]
        cache = fw_spec["cache"]
        learner_kwargs = pipe_config_dict["learner_kwargs"]
        reducer_kwargs = pipe_config_dict["reducer_kwargs"]
        cleaner_kwargs = pipe_config_dict["cleaner_kwargs"]
        autofeaturizer_kwargs = pipe_config_dict["autofeaturizer_kwargs"]

        # Modify data_file based on computing resource
        data_dir = os.environ["AMM_DATASET_DIR"]
        data_file = os.path.join(data_dir, data_file)

        # Modify save_dir based on computing resource
        bench_dir = os.environ["AMM_BENCH_DIR"]
        base_save_dir = fw_spec["base_save_dir"]
        base_save_dir = os.path.join(bench_dir, base_save_dir)
        save_dir = fw_spec.pop("save_dir")
        save_dir = os.path.join(base_save_dir, save_dir)

        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        # Set up pipeline config
        if learner_name == "TPOTAdaptor":
            learner = TPOTAdaptor(**learner_kwargs)
        elif learner_name == "rf":
            warnings.warn(
                "Learner kwargs passed into RF regressor/classifiers bc. rf being used."
            )
            learner = SinglePipelineAdaptor(
                regressor=RandomForestRegressor(**learner_kwargs),
                classifier=RandomForestClassifier(**learner_kwargs),
            )
        else:
            raise ValueError("{} not supported by RunPipe yet!"
                             "".format(learner_name))
        if cache:
            autofeaturizer_kwargs["cache_src"] = os.path.join(
                base_save_dir, "features.json")
        pipe_config = {
            "learner": learner,
            "reducer": FeatureReducer(**reducer_kwargs),
            "cleaner": DataCleaner(**cleaner_kwargs),
            "autofeaturizer": AutoFeaturizer(**autofeaturizer_kwargs),
        }

        pipe = MatPipe(**pipe_config)

        # Set up dataset
        # Dataset should already be set up correctly as json beforehand.
        # this includes targets being converted to classification, removing
        # extra columns, having the names of featurization cols set to the
        # same as the matpipe config, etc.
        df = load_dataframe_from_json(data_file)

        # Check other parameters that would otherwise not be checked until after
        # benchmarking, hopefully saves some errors at the end during scoring.
        if problem_type not in [AMM_CLF_NAME, AMM_REG_NAME]:
            raise ValueError("Problem must be either classification or "
                             "regression.")
        elif problem_type == AMM_CLF_NAME:
            if not isinstance(clf_pos_label, (str, bool)):
                raise TypeError(
                    "The classification positive label should be a "
                    "string, or bool not {}."
                    "".format(type(clf_pos_label)))
            elif clf_pos_label not in df[target]:
                raise ValueError("The classification positive label should be"
                                 "present in the target column.")
            elif len(df[target].unique()) > 2:
                raise ValueError("Only binary classification scoring available"
                                 "at this time.")

        # Set up testing scheme
        if problem_type == AMM_REG_NAME:
            kfold = KFold(**kfold_config)
        else:
            kfold = StratifiedKFold(**kfold_config)
        if fold >= kfold.n_splits:
            raise ValueError("{} is out of range for KFold with n_splits="
                             "{}".format(fold, kfold))

        # Run the benchmark
        t1 = time.time()
        results = pipe.benchmark(df,
                                 target,
                                 kfold,
                                 fold_subset=[fold],
                                 cache=True)
        result_df = results[0]
        elapsed_time = time.time() - t1

        # Save everything
        pipe.save(os.path.join(save_dir, "pipe.p"))
        pipe.inspect(filename=os.path.join(save_dir, "digest.txt"))
        result_df.to_csv(os.path.join(save_dir, "test_df.csv"))
        pipe.post_fit_df.to_csv(os.path.join(save_dir, "fitted_df.csv"))

        # Evaluate model
        true = result_df[target]
        test = result_df[target + " predicted"]

        pass_to_storage = {}
        if problem_type == AMM_REG_NAME:
            pass_to_storage["r2"] = r2_score(true, test)
            pass_to_storage["mae"] = mean_absolute_error(true, test)
            pass_to_storage["rmse"] = sqrt(mean_squared_error(true, test))
        elif problem_type == AMM_CLF_NAME:
            pass_to_storage["f1"] = f1_score(true,
                                             test,
                                             pos_label=clf_pos_label)
            pass_to_storage["roc_auc"] = roc_auc_score(true, test)
            pass_to_storage["accuracy"] = accuracy_score(true, test)
        else:
            raise ValueError("Scoring method for problem type {} not supported"
                             "".format(problem_type))

        # Extract important inspect for storage
        try:
            # TPOT Adaptor
            best_pipeline = [
                str(step) for step in pipe.learner.best_pipeline.steps
            ]
        except AttributeError:
            best_pipeline = str(pipe.learner.best_pipeline)

        features = pipe.learner.features
        n_features = len(features)
        fold_orig = list(kfold.split(df, y=df[target]))[fold]
        n_samples_train_original = len(fold_orig[0])
        n_samples_test_original = len(fold_orig[1])

        pass_to_storage.update({
            "target": target,
            "best_pipeline": best_pipeline,
            "elapsed_time": elapsed_time,
            "features": features,
            "n_features": n_features,
            "n_test_samples_original": n_samples_test_original,
            "n_train_samples_original": n_samples_train_original,
            "n_train_samples": len(pipe.post_fit_df),
            "n_test_samples": len(test),
            "test_sample_frac_retained": len(test) / n_samples_test_original,
            "completion_time": datetime.datetime.now(),
            "base_save_dir": base_save_dir,
            "save_dir": save_dir,
        })
        fw_spec.update(pass_to_storage)