def test_transferability(self): df_train = self.df.iloc[:200] df_test = self.df.iloc[201:250] pipe = MatPipe(**debug_config) pipe.fit(df_train, self.target) df_test = pipe.predict(df_test, self.target) true = df_test[self.target] test = df_test[self.target + " predicted"] self.assertTrue("composition" not in df_test.columns) self.assertTrue(r2_score(true, test) > 0.5) # Use the same pipe object by refitting and reusing df_train2 = self.df.iloc[250:450] df_test2 = self.df.iloc[451:500] pipe.fit(df_train2, self.target) df_test2 = pipe.predict(df_test2, self.target) true2 = df_test2[self.target] test2 = df_test2[self.target + " predicted"] self.assertTrue("composition" not in df_test2.columns) self.assertTrue(r2_score(true2, test2) > 0.5)
def test_user_features(self): pipe = MatPipe(**debug_config) df = self.df df["G_VRH"] = self.extra_features self.assertTrue("G_VRH" in df.columns) self.assertTrue("K_VRH" in df.columns) df_train = df.iloc[:200] df_test = df.iloc[201:250] pipe.fit(df_train, self.target) # If shear modulus is included as a feature it should probably show up # in the final pipeline self.assertTrue("G_VRH" in pipe.learner.features) df_test = pipe.predict(df_test, self.target) true = df_test[self.target] test = df_test[self.target + " predicted"] self.assertTrue(r2_score(true, test) > 0.75)
def test_persistence_and_digest(self): pipe = MatPipe(**debug_config) with self.assertRaises(NotFittedError): pipe.save() df = self.df[-200:] pipe.fit(df, self.target) filename = os.path.join(test_dir, "test_pipe.p") pipe.save(filename=filename) pipe = MatPipe.load(filename, logger=False) df_test = pipe.predict(self.df[-220:-201], self.target) self.assertTrue(self.target in df_test.columns) self.assertTrue(self.target + " predicted" in df_test.columns) digest_file = os.path.join(test_dir, "matdigest.txt") digest = pipe.digest(filename=digest_file) self.assertTrue(os.path.isfile(digest_file)) self.assertTrue(isinstance(digest, str))
class TestMatPipe(unittest.TestCase): def setUp(self): df = load_dataset("elastic_tensor_2015").rename( columns={"formula": "composition"}) self.df = df[["composition", "K_VRH"]] self.df_struc = df[["composition", "structure", "K_VRH"]] self.extra_features = df["G_VRH"] self.target = "K_VRH" self.config = get_preset_config(config_preset, n_jobs=n_jobs) self.config_cached = get_preset_config(config_preset, cache_src=CACHE_SRC, n_jobs=n_jobs) self.pipe = MatPipe(**self.config) self.pipe_cached = MatPipe(**self.config_cached) @unittest.skipIf("transferability" in skip, reason) def test_transferability(self): df_train = self.df.iloc[:200] df_test = self.df.iloc[201:250] self.pipe.fit(df_train, self.target) df_test = self.pipe.predict(df_test) true = df_test[self.target] test = df_test[self.target + " predicted"] self.assertTrue("composition" not in df_test.columns) self.assertTrue(r2_score(true, test) > 0.5) # Use the same pipe object by refitting and reusing df_train2 = self.df.iloc[250:450] df_test2 = self.df.iloc[451:500] self.pipe.fit(df_train2, self.target) df_test2 = self.pipe.predict(df_test2) true2 = df_test2[self.target] test2 = df_test2[self.target + " predicted"] self.assertTrue("composition" not in df_test2.columns) self.assertTrue(r2_score(true2, test2) > 0.5) @unittest.skipIf("user_features" in skip, reason) def test_user_features(self): df = self.df df["G_VRH"] = self.extra_features self.assertTrue("G_VRH" in df.columns) self.assertTrue("K_VRH" in df.columns) df_train = df.iloc[:200] df_test = df.iloc[201:250] self.pipe.fit(df_train, self.target) # If shear modulus is included as a feature it should probably show up # in the final pipeline self.assertTrue("G_VRH" in self.pipe.learner.features) df_test = self.pipe.predict(df_test) true = df_test[self.target] test = df_test[self.target + " predicted"] self.assertTrue(r2_score(true, test) > 0.75) @unittest.skipIf("predict_kwargs" in skip, reason) def test_predict_kwargs(self): # Test mat_pipe.predict()'s ignore and output_col kwargs. df_train = self.df.iloc[:200] df_test = self.df.iloc[201:250] ef = "ExtraFeature" df_test[ef] = [i + 100 for i in range(df_test.shape[0])] self.pipe.fit(df_train, self.target) self.assertTrue(ef in df_test.columns) self.assertTrue("composition" in df_test.columns) ignore = [ef, "composition"] predicted_ignored = self.pipe.predict(df_test, ignore=ignore) self.assertTrue(ef in predicted_ignored.columns) self.assertTrue("composition" in predicted_ignored.columns) predicted_none = self.pipe.predict(df_test, ignore=None) self.assertFalse(ef in predicted_none.columns) self.assertFalse("composition" in predicted_none.columns) some = ["composition"] predicted_some = self.pipe.predict(df_test, ignore=some) self.assertFalse(ef in predicted_some.columns) self.assertTrue("composition" in predicted_some.columns) output_col_name = self.target + "_pred" predicted_custom_col = self.pipe.predict( df_test, output_col=output_col_name) self.assertTrue(output_col_name in predicted_custom_col) @unittest.skipIf("benchmarking" in skip, reason) def test_benchmarking_no_cache(self): pipe = self.pipe # Make sure we can't run a cached run with no cache AF and cache pipe with self.assertRaises(AutomatminerError): self._run_benchmark(cache=True, pipe=pipe) self._run_benchmark(cache=False, pipe=pipe) @unittest.skipIf("benchmarking" in skip, reason) def test_benchmarking_cache(self): pipe = self.pipe_cached # Make sure we can't run a cached run with no cache AF and cache pipe with self.assertRaises(AutomatminerError): self._run_benchmark(cache=False, pipe=pipe) self._run_benchmark(cache=True, pipe=pipe) @unittest.skipIf("persistence" in skip, reason) def test_persistence(self): with self.assertRaises(NotFittedError): self.pipe.save() df = self.df[-200:] self.pipe.fit(df, self.target) # Load test self.pipe.save(filename=PIPE_PATH) self.pipe = MatPipe.load(PIPE_PATH) df_test = self.pipe.predict(self.df[-220:-201]) self.assertTrue(self.target in df_test.columns) self.assertTrue(self.target + " predicted" in df_test.columns) # Version test self.pipe.version = "not a real version" self.pipe.save(VERSION_PIPE_PATH) with self.assertRaises(AutomatminerError): MatPipe.load(VERSION_PIPE_PATH) @unittest.skipIf("digests" in skip, reason) def test_summarize_and_inspect(self): df = self.df[-200:] self.pipe.fit(df, self.target) for ext in AMM_SUPPORTED_EXTS: digest = self.pipe.inspect(filename=DIGEST_PATH + ext) self.assertTrue(os.path.isfile(DIGEST_PATH + ext)) self.assertTrue(isinstance(digest, dict)) for ext in AMM_SUPPORTED_EXTS: digest = self.pipe.summarize(filename=DIGEST_PATH + ext) self.assertTrue(os.path.isfile(DIGEST_PATH + ext)) self.assertTrue(isinstance(digest, dict)) def _run_benchmark(self, cache, pipe): # Test static, regular benchmark (no fittable featurizers) df = self.df.iloc[500:600] kfold = KFold(n_splits=2) df_tests = pipe.benchmark(df, self.target, kfold, cache=cache) self.assertEqual(len(df_tests), kfold.n_splits) # Make sure we retain a good amount of test samples... df_tests_all = pd.concat(df_tests) self.assertGreaterEqual(len(df_tests_all), 0.95 * len(df)) # Test static subset of kfold df2 = self.df.iloc[500:550] df_tests2 = pipe.benchmark(df2, self.target, kfold, fold_subset=[0], cache=cache) self.assertEqual(len(df_tests2), 1) def tearDown(self) -> None: digests = [DIGEST_PATH + ext for ext in AMM_SUPPORTED_EXTS] for remnant in [CACHE_SRC, PIPE_PATH, VERSION_PIPE_PATH, *digests]: if os.path.exists(remnant): os.remove(remnant)
class TestMatPipe(unittest.TestCase): def setUp(self): df = load_dataset("elastic_tensor_2015").rename( columns={"formula": "composition"}) self.df = df[["composition", "K_VRH"]] self.df_struc = df[["composition", "structure", "K_VRH"]] self.extra_features = df["G_VRH"] self.target = "K_VRH" self.config = get_preset_config("debug_single") self.config_cached = get_preset_config("debug_single", cache_src=CACHE_SRC) self.pipe = MatPipe(**self.config) self.pipe_cached = MatPipe(**self.config_cached) def test_transferability(self): df_train = self.df.iloc[:200] df_test = self.df.iloc[201:250] self.pipe.fit(df_train, self.target) df_test = self.pipe.predict(df_test, self.target) true = df_test[self.target] test = df_test[self.target + " predicted"] self.assertTrue("composition" not in df_test.columns) self.assertTrue(r2_score(true, test) > 0.5) # Use the same pipe object by refitting and reusing df_train2 = self.df.iloc[250:450] df_test2 = self.df.iloc[451:500] self.pipe.fit(df_train2, self.target) df_test2 = self.pipe.predict(df_test2, self.target) true2 = df_test2[self.target] test2 = df_test2[self.target + " predicted"] self.assertTrue("composition" not in df_test2.columns) self.assertTrue(r2_score(true2, test2) > 0.5) def test_user_features(self): df = self.df df["G_VRH"] = self.extra_features self.assertTrue("G_VRH" in df.columns) self.assertTrue("K_VRH" in df.columns) df_train = df.iloc[:200] df_test = df.iloc[201:250] self.pipe.fit(df_train, self.target) # If shear modulus is included as a feature it should probably show up # in the final pipeline self.assertTrue("G_VRH" in self.pipe.learner.features) df_test = self.pipe.predict(df_test, self.target) true = df_test[self.target] test = df_test[self.target + " predicted"] self.assertTrue(r2_score(true, test) > 0.75) @unittest.skipIf(int(os.environ.get("SKIP_INTENSIVE", 0)), "Test too intensive for CircleCI commit builds.") def test_benchmarking_no_cache(self): pipe = self.pipe # Make sure we can't run a cached run with no cache AF and cache pipe with self.assertRaises(AutomatminerError): self._run_benchmark(cache=True, pipe=pipe) self._run_benchmark(cache=False, pipe=pipe) @unittest.skipIf(int(os.environ.get("SKIP_INTENSIVE", 0)), "Test too intensive for CircleCI commit builds.") def test_benchmarking_cache(self): pipe = self.pipe_cached # Make sure we can't run a cached run with no cache AF and cache pipe with self.assertRaises(AutomatminerError): self._run_benchmark(cache=False, pipe=pipe) self._run_benchmark(cache=True, pipe=pipe) def test_persistence_and_digest(self): with self.assertRaises(NotFittedError): self.pipe.save() df = self.df[-200:] self.pipe.fit(df, self.target) filename = os.path.join(test_dir, PIPE_PATH) self.pipe.save(filename=filename) self.pipe = MatPipe.load(filename, logger=False) df_test = self.pipe.predict(self.df[-220:-201], self.target) self.assertTrue(self.target in df_test.columns) self.assertTrue(self.target + " predicted" in df_test.columns) digest_file = os.path.join(test_dir, DIGEST_PATH) digest = self.pipe.digest(filename=digest_file) self.assertTrue(os.path.isfile(digest_file)) self.assertTrue(isinstance(digest, str)) def _run_benchmark(self, cache, pipe): # Test static, regular benchmark (no fittable featurizers) df = self.df.iloc[500:600] kfold = KFold(n_splits=5) df_tests = pipe.benchmark(df, self.target, kfold, cache=cache) self.assertEqual(len(df_tests), kfold.n_splits) # Make sure we retain a good amount of test samples... df_tests_all = pd.concat(df_tests) self.assertGreaterEqual(len(df_tests_all), 0.95 * len(df)) # Test static subset of kfold df2 = self.df.iloc[500:550] df_tests2 = pipe.benchmark(df2, self.target, kfold, fold_subset=[0, 3], cache=cache) self.assertEqual(len(df_tests2), 2) def tearDown(self): for remnant in [CACHE_SRC, PIPE_PATH, DIGEST_PATH]: if os.path.exists(remnant): os.remove(remnant)