Example #1
0
def main(args):
    # --- CONFIG
    device = torch.device(f"cuda:{args.cuda}"
                          if torch.cuda.is_available() and
                          args.cuda >= 0 else "cpu")
    # ---------

    # --- TRANSFORMATIONS
    train_transform = transforms.Compose([
        RandomCrop(28, padding=4),
        ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
    ])
    test_transform = transforms.Compose([
        ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
    ])
    # ---------

    # --- SCENARIO CREATION
    mnist_train = MNIST(root=expanduser("~") + "/.avalanche/data/mnist/",
                        train=True, download=True, transform=train_transform)
    mnist_test = MNIST(root=expanduser("~") + "/.avalanche/data/mnist/",
                       train=False, download=True, transform=test_transform)
    scenario = nc_scenario(
        mnist_train, mnist_test, 5, task_labels=False, seed=1234)
    # ---------

    # MODEL CREATION
    model = SimpleMLP(num_classes=scenario.n_classes)

    eval_plugin = EvaluationPlugin(
        accuracy_metrics(epoch=True, experience=True, stream=True),
        loss_metrics(epoch=True, experience=True, stream=True),
        # save image should be False to appropriately view
        # results in Interactive Logger.
        # a tensor will be printed
        StreamConfusionMatrix(save_image=False, normalize='all'),
        loggers=InteractiveLogger()
    )

    # CREATE THE STRATEGY INSTANCE (NAIVE)
    cl_strategy = Naive(
        model, SGD(model.parameters(), lr=0.001, momentum=0.9),
        CrossEntropyLoss(), train_mb_size=100, train_epochs=4, eval_mb_size=100,
        device=device, evaluator=eval_plugin, plugins=[ReplayPlugin(5000)])

    # TRAINING LOOP
    print('Starting experiment...')
    results = []
    for experience in scenario.train_stream:
        print("Start of experience: ", experience.current_experience)
        print("Current Classes: ", experience.classes_in_this_experience)

        cl_strategy.train(experience)
        print('Training completed')

        print('Computing accuracy on the whole test set')
        results.append(cl_strategy.eval(scenario.test_stream))
Example #2
0
def evaluate_on_cifar_100(
    *,
    method_name: str,
    plugins: List[StrategyPlugin],
    tb_dir: str = str(TB_DIR),
    seed: int = 42,
    verbose: bool = False,
    train_epochs: int = 70,
    n_classes_per_batch: int = 10,
    start_lr: float = 2.0,
    lr_milestones: List[int] = None,
    lr_gamma: float = 0.2,
):
    assert not N_CLASSES % n_classes_per_batch, "n_classes should be a multiple of n_classes_per_batch"

    scenario = SplitCIFAR100(n_experiences=N_CLASSES // n_classes_per_batch)
    model = ResNet32(n_classes=N_CLASSES)

    tb_logger = TensorboardLogger(tb_dir + f"/cifar100_{n_classes_per_batch}/{method_name}/{seed}_{create_time_id()}")

    loggers = [tb_logger]
    if verbose:
        loggers.append(InteractiveLogger())

    strategy = Naive(
        model=model,
        optimizer=SGD(model.parameters(), lr=2.0, weight_decay=0.00001),
        criterion=CrossEntropyLoss(),
        train_epochs=train_epochs,
        train_mb_size=128,
        device=device,
        plugins=plugins + [LRSchedulerPlugin(start_lr=start_lr, milestones=lr_milestones, gamma=lr_gamma)],
        evaluator=EvaluationPlugin(
            [
                NormalizedStreamAccuracy(),
                NormalizedExperienceAccuracy(),
                ExperienceMeanRepresentationShift(MeanL2RepresentationShift()),
                ExperienceMeanRepresentationShift(MeanCosineRepresentationShift()),
            ],
            StreamConfusionMatrix(
                num_classes=N_CLASSES,
                image_creator=SortedCMImageCreator(scenario.classes_order),
            ),
            loggers=loggers,
        ),
    )

    for i, train_task in enumerate(scenario.train_stream, 1):
        strategy.train(train_task, num_workers=0)
        strategy.eval(scenario.test_stream[:i])

    tb_logger.writer.flush()
Example #3
0
def evaluate_split_mnist(
    name: str,
    plugins: List[StrategyPlugin],
    seed: int,
    tensorboard_logs_dir: Union[str, Path] = str(TB_DIR),
    verbose: bool = False,
    criterion: Any = CrossEntropyLoss(),
):

    split_mnist = SplitMNIST(n_experiences=5, seed=seed)

    model = SimpleMLP(n_classes=split_mnist.n_classes, input_size=28 * 28)
    # model = SimpleCNN(n_channels=1, n_classes=split_mnist.n_classes)

    tb_logger = TensorboardLogger(tensorboard_logs_dir + f"/split_mnist/{name}/{seed}_{create_time_id()}")

    loggers = [tb_logger]
    if verbose:
        loggers.append(InteractiveLogger())

    cl_strategy = Naive(
        model=model,
        optimizer=SGD(model.parameters(), lr=0.001, momentum=0.9),
        criterion=criterion,
        train_mb_size=32,
        train_epochs=2,
        eval_mb_size=32,
        device=device,
        plugins=plugins,
        evaluator=EvaluationPlugin(
            [
                NormalizedStreamAccuracy(),
                NormalizedExperienceAccuracy(),
                ExperienceMeanRepresentationShift(MeanL2RepresentationShift()),
                ExperienceMeanRepresentationShift(MeanCosineRepresentationShift()),
            ],
            StreamConfusionMatrix(
                num_classes=split_mnist.n_classes,
                image_creator=SortedCMImageCreator(split_mnist.classes_order),
            ),
            loggers=loggers,
        ),
    )

    for i, train_task in enumerate(split_mnist.train_stream, 1):
        cl_strategy.train(train_task, num_workers=0)
        cl_strategy.eval(split_mnist.test_stream[:i])

    tb_logger.writer.flush()
Example #4
0
def main(args):
    # --- CONFIG
    device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available()
                          and args.cuda >= 0 else "cpu")
    # ---------

    # --- TRANSFORMATIONS
    train_transform = transforms.Compose([
        RandomCrop(28, padding=4),
        ToTensor(),
        transforms.Normalize((0.1307, ), (0.3081, ))
    ])
    test_transform = transforms.Compose(
        [ToTensor(), transforms.Normalize((0.1307, ), (0.3081, ))])
    # ---------

    # --- SCENARIO CREATION
    mnist_train = MNIST(root=expanduser("~") + "/.avalanche/data/mnist/",
                        train=True,
                        download=True,
                        transform=train_transform)
    mnist_test = MNIST(root=expanduser("~") + "/.avalanche/data/mnist/",
                       train=False,
                       download=True,
                       transform=test_transform)
    scenario = nc_benchmark(mnist_train,
                            mnist_test,
                            5,
                            task_labels=False,
                            seed=1234)
    # ---------

    # MODEL CREATION
    model = SimpleMLP(num_classes=scenario.n_classes)

    interactive_logger = InteractiveLogger()
    tensorboard_logger = TensorboardLogger()

    eval_plugin = EvaluationPlugin(
        accuracy_metrics(minibatch=True,
                         epoch=True,
                         epoch_running=True,
                         experience=True,
                         stream=True),
        loss_metrics(minibatch=True,
                     epoch=True,
                     epoch_running=True,
                     experience=True,
                     stream=True),
        forgetting_metrics(experience=True, stream=True),
        StreamConfusionMatrix(),
        cpu_usage_metrics(minibatch=True,
                          epoch=True,
                          experience=True,
                          stream=True),
        timing_metrics(minibatch=True,
                       epoch=True,
                       experience=True,
                       stream=True),
        ram_usage_metrics(every=0.5,
                          minibatch=True,
                          epoch=True,
                          experience=True,
                          stream=True),
        gpu_usage_metrics(args.cuda,
                          every=0.5,
                          minibatch=True,
                          epoch=True,
                          experience=True,
                          stream=True),
        disk_usage_metrics(minibatch=True,
                           epoch=True,
                           experience=True,
                           stream=True),
        MAC_metrics(minibatch=True, epoch=True, experience=True),
        loggers=[interactive_logger, tensorboard_logger])

    # CREATE THE STRATEGY INSTANCE (NAIVE)
    cl_strategy = Naive(model,
                        SGD(model.parameters(), lr=0.001, momentum=0.9),
                        CrossEntropyLoss(),
                        train_mb_size=100,
                        train_epochs=4,
                        eval_mb_size=100,
                        device=device,
                        evaluator=eval_plugin)

    # TRAINING LOOP
    print('Starting experiment...')
    results = []
    for experience in scenario.train_stream:
        print("Start of experience: ", experience.current_experience)
        print("Current Classes: ", experience.classes_in_this_experience)

        cl_strategy.train(experience)
        print('Training completed')

        print('Computing accuracy on the whole test set')
        results.append(cl_strategy.eval(scenario.test_stream))
Example #5
0
# log to Tensorboard
tb_logger = TensorboardLogger(f"./tb_data/{cur_time}-SimpleMLP/")

# log to text file
text_logger = TextLogger(open(f"./logs/{cur_time}-SimpleMLP.txt", "w+"))

# print to stdout
interactive_logger = InteractiveLogger()

eval_plugin = EvaluationPlugin(
    accuracy_metrics(minibatch=True, epoch=True, experience=True, stream=True),
    loss_metrics(minibatch=True, epoch=True, experience=True, stream=True),
    timing_metrics(epoch=True, epoch_running=True),
    ExperienceForgetting(),
    cpu_usage_metrics(experience=True),
    StreamConfusionMatrix(num_classes=2, save_image=False),
    disk_usage_metrics(minibatch=True, epoch=True, experience=True, stream=True),
    loggers=[interactive_logger, text_logger, tb_logger],
)

cl_strategy = GEM(
    model,
    optimizer=Adam(model.parameters()),
    patterns_per_exp=1470,
    criterion=CrossEntropyLoss(),
    train_mb_size=128,
    train_epochs=50,
    eval_mb_size=128,
    evaluator=eval_plugin,
    device=device,
)
Example #6
0
def main():
    args = parser.parse_args()
    args.cuda = args.cuda == 'yes'
    args.disable_pbar = args.disable_pbar == 'yes'
    args.stable_sgd = args.stable_sgd == 'yes'
    print(f"args={vars(args)}")

    device = torch.device("cuda:0" if torch.cuda.is_available() and args.cuda else "cpu")
    print(f'Using device: {device}')

    # unique identifier
    uid = uuid.uuid4().hex if args.uid is None else args.uid
    now = str(datetime.datetime.now().date()) + "_" + ':'.join(str(datetime.datetime.now().time()).split(':')[:-1])
    runname = 'T={}_id={}'.format(now, uid) if not args.resume else args.resume

    # Paths
    setupname = [args.strategy, args.exp_name, args.model, args.scenario]
    parentdir = os.path.join(args.save_path, '_'.join(setupname))
    results_path = Path(os.path.join(parentdir, runname))
    results_path.mkdir(parents=True, exist_ok=True)
    tb_log_dir = os.path.join(results_path, 'tb_run')  # Group all runs

    # Eval results
    eval_metric = 'Top1_Acc_Stream/eval_phase/test_stream'
    eval_results_dir = results_path / eval_metric.split('/')[0]
    eval_results_dir.mkdir(parents=True, exist_ok=True)

    eval_result_files = []  # To avg over seeds
    seeds = [args.seed] if args.seed is not None else list(range(args.n_seeds))
    for seed in seeds:
        # initialize seeds
        print("STARTING SEED {}/{}".format(seed, len(seeds) - 1))

        set_seed(seed)

        # create scenario
        if args.scenario == 'smnist':
            inputsize = 28 * 28
            scenario = SplitMNIST(n_experiences=5, return_task_id=False, seed=seed,
                                  fixed_class_order=[i for i in range(10)])
        elif args.scenario == 'CIFAR10':
            scenario = SplitCIFAR10(n_experiences=5, return_task_id=False, seed=seed,
                                    fixed_class_order=[i for i in range(10)])
            inputsize = (3, 32, 32)
        elif args.scenario == 'miniimgnet':
            scenario = SplitMiniImageNet(args.dset_rootpath, n_experiences=20, return_task_id=False, seed=seed,
                                         fixed_class_order=[i for i in range(100)])
            inputsize = (3, 84, 84)
        else:
            raise ValueError("Wrong scenario name.")
        print(f"Scenario = {args.scenario}")

        if args.model == 'simple_mlp':
            model = MyMLP(input_size=inputsize, hidden_size=args.hs)
        elif args.model == 'resnet18':
            if not args.stable_sgd:
                assert args.drop_prob == 0
            model = ResNet18(inputsize, scenario.n_classes, drop_prob=args.drop_prob)

        criterion = torch.nn.CrossEntropyLoss()
        optimizer = torch.optim.SGD(model.parameters(), lr=args.lr)

        # Paths
        eval_results_file = eval_results_dir / f'seed={seed}.csv'

        # LOGGING
        tb_logger = TensorboardLogger(tb_log_dir=tb_log_dir, tb_log_exp_name=f'seed={seed}.pt')  # log to Tensorboard
        print_logger = TextLogger() if args.disable_pbar else InteractiveLogger()  # print to stdout
        eval_logger = EvalTextLogger(metric_filter=eval_metric, file=open(eval_results_file, 'a'))
        eval_result_files.append(eval_results_file)

        # METRICS
        eval_plugin = EvaluationPlugin(
            accuracy_metrics(experience=True, stream=True),
            loss_metrics(minibatch=True, experience=True),
            ExperienceForgetting(),  # Test only
            StreamConfusionMatrix(num_classes=scenario.n_classes, save_image=True),

            # LOG OTHER STATS
            # timing_metrics(epoch=True, experience=False),
            # cpu_usage_metrics(experience=True),
            # DiskUsageMonitor(),
            # MinibatchMaxRAM(),
            # GpuUsageMonitor(0),
            loggers=[print_logger, tb_logger, eval_logger])

        plugins = None
        if args.strategy == 'replay':
            plugins = [RehRevPlugin(n_total_memories=args.mem_size,
                                    mode=args.replay_mode,  # STEP-BACK
                                    aversion_steps=args.aversion_steps,
                                    aversion_lr=args.aversion_lr,
                                    stable_sgd=args.stable_sgd,  # Stable SGD
                                    lr_decay=args.lr_decay,
                                    init_epochs=args.init_epochs  # First task epochs
                                    )]

        # CREATE THE STRATEGY INSTANCE (NAIVE)
        strategy = Naive(model, optimizer, criterion,
                         train_epochs=args.epochs, device=device,
                         train_mb_size=args.bs, evaluator=eval_plugin,
                         plugins=plugins
                         )

        # train on the selected scenario with the chosen strategy
        print('Starting experiment...')
        for experience in scenario.train_stream:
            if experience.current_experience == args.until_task:
                print("CUTTING OF TRAINING AT TASK ", experience.current_experience)
                break
            else:
                print("Start training on step ", experience.current_experience)

            strategy.train(experience)
            print("End training on step ", experience.current_experience)
            print('Computing accuracy on the test set')
            res = strategy.eval(scenario.test_stream[:args.until_task])  # Gathered by EvalLogger

    final_results_file = eval_results_dir / f'seed_summary.pt'
    stat_summarize(eval_result_files, final_results_file)
    print(f"[FILE:TB-RESULTS]: {tb_log_dir}")
    print(f"[FILE:FINAL-RESULTS]: {final_results_file}")
    print("FINISHED SCRIPT")
Example #7
0
tb_logger = TensorboardLogger(tb_log_dir=path)
# log to text file
text_logger = TextLogger(open('log.txt', 'a'))
# print to stdout
interactive_logger = InteractiveLogger()
eval_plugin = EvaluationPlugin(
    accuracy_metrics(minibatch=False,
                     epoch=False,
                     experience=True,
                     stream=True),
    #loss_metrics(minibatch=True, epoch=True, experience=True, stream=True),
    #timing_metrics(epoch=True),
    #cpu_usage_metrics(experience=True),
    #forgetting_metrics(experience=True, stream=True),
    #StreamConfusionMatrix(num_classes=5, save_image=False),
    StreamConfusionMatrix(save_image=False),
    #disk_usage_metrics(minibatch=True, epoch=True, experience=True, stream=True)
    loggers=[interactive_logger, text_logger, tb_logger])

# CREATE THE STRATEGY INSTANCE (NAIVE)
if (args.cl_strategy == "Naive"):
    cl_strategy = Naive(model,
                        Adam(model.parameters(), lr=0.001),
                        CrossEntropyLoss(),
                        train_mb_size=args.batch_size,
                        train_epochs=args.num_epochs,
                        eval_mb_size=args.batch_size * 2,
                        evaluator=eval_plugin,
                        device=device)
elif (args.cl_strategy == "SI"):
    cl_strategy = SynapticIntelligence(model,