def main(args): # --- CONFIG device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available() and args.cuda >= 0 else "cpu") # --------- # --- TRANSFORMATIONS train_transform = transforms.Compose([ RandomCrop(28, padding=4), ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) test_transform = transforms.Compose([ ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) # --------- # --- SCENARIO CREATION mnist_train = MNIST(root=expanduser("~") + "/.avalanche/data/mnist/", train=True, download=True, transform=train_transform) mnist_test = MNIST(root=expanduser("~") + "/.avalanche/data/mnist/", train=False, download=True, transform=test_transform) scenario = nc_scenario( mnist_train, mnist_test, 5, task_labels=False, seed=1234) # --------- # MODEL CREATION model = SimpleMLP(num_classes=scenario.n_classes) eval_plugin = EvaluationPlugin( accuracy_metrics(epoch=True, experience=True, stream=True), loss_metrics(epoch=True, experience=True, stream=True), # save image should be False to appropriately view # results in Interactive Logger. # a tensor will be printed StreamConfusionMatrix(save_image=False, normalize='all'), loggers=InteractiveLogger() ) # CREATE THE STRATEGY INSTANCE (NAIVE) cl_strategy = Naive( model, SGD(model.parameters(), lr=0.001, momentum=0.9), CrossEntropyLoss(), train_mb_size=100, train_epochs=4, eval_mb_size=100, device=device, evaluator=eval_plugin, plugins=[ReplayPlugin(5000)]) # TRAINING LOOP print('Starting experiment...') results = [] for experience in scenario.train_stream: print("Start of experience: ", experience.current_experience) print("Current Classes: ", experience.classes_in_this_experience) cl_strategy.train(experience) print('Training completed') print('Computing accuracy on the whole test set') results.append(cl_strategy.eval(scenario.test_stream))
def evaluate_on_cifar_100( *, method_name: str, plugins: List[StrategyPlugin], tb_dir: str = str(TB_DIR), seed: int = 42, verbose: bool = False, train_epochs: int = 70, n_classes_per_batch: int = 10, start_lr: float = 2.0, lr_milestones: List[int] = None, lr_gamma: float = 0.2, ): assert not N_CLASSES % n_classes_per_batch, "n_classes should be a multiple of n_classes_per_batch" scenario = SplitCIFAR100(n_experiences=N_CLASSES // n_classes_per_batch) model = ResNet32(n_classes=N_CLASSES) tb_logger = TensorboardLogger(tb_dir + f"/cifar100_{n_classes_per_batch}/{method_name}/{seed}_{create_time_id()}") loggers = [tb_logger] if verbose: loggers.append(InteractiveLogger()) strategy = Naive( model=model, optimizer=SGD(model.parameters(), lr=2.0, weight_decay=0.00001), criterion=CrossEntropyLoss(), train_epochs=train_epochs, train_mb_size=128, device=device, plugins=plugins + [LRSchedulerPlugin(start_lr=start_lr, milestones=lr_milestones, gamma=lr_gamma)], evaluator=EvaluationPlugin( [ NormalizedStreamAccuracy(), NormalizedExperienceAccuracy(), ExperienceMeanRepresentationShift(MeanL2RepresentationShift()), ExperienceMeanRepresentationShift(MeanCosineRepresentationShift()), ], StreamConfusionMatrix( num_classes=N_CLASSES, image_creator=SortedCMImageCreator(scenario.classes_order), ), loggers=loggers, ), ) for i, train_task in enumerate(scenario.train_stream, 1): strategy.train(train_task, num_workers=0) strategy.eval(scenario.test_stream[:i]) tb_logger.writer.flush()
def evaluate_split_mnist( name: str, plugins: List[StrategyPlugin], seed: int, tensorboard_logs_dir: Union[str, Path] = str(TB_DIR), verbose: bool = False, criterion: Any = CrossEntropyLoss(), ): split_mnist = SplitMNIST(n_experiences=5, seed=seed) model = SimpleMLP(n_classes=split_mnist.n_classes, input_size=28 * 28) # model = SimpleCNN(n_channels=1, n_classes=split_mnist.n_classes) tb_logger = TensorboardLogger(tensorboard_logs_dir + f"/split_mnist/{name}/{seed}_{create_time_id()}") loggers = [tb_logger] if verbose: loggers.append(InteractiveLogger()) cl_strategy = Naive( model=model, optimizer=SGD(model.parameters(), lr=0.001, momentum=0.9), criterion=criterion, train_mb_size=32, train_epochs=2, eval_mb_size=32, device=device, plugins=plugins, evaluator=EvaluationPlugin( [ NormalizedStreamAccuracy(), NormalizedExperienceAccuracy(), ExperienceMeanRepresentationShift(MeanL2RepresentationShift()), ExperienceMeanRepresentationShift(MeanCosineRepresentationShift()), ], StreamConfusionMatrix( num_classes=split_mnist.n_classes, image_creator=SortedCMImageCreator(split_mnist.classes_order), ), loggers=loggers, ), ) for i, train_task in enumerate(split_mnist.train_stream, 1): cl_strategy.train(train_task, num_workers=0) cl_strategy.eval(split_mnist.test_stream[:i]) tb_logger.writer.flush()
def main(args): # --- CONFIG device = torch.device(f"cuda:{args.cuda}" if torch.cuda.is_available() and args.cuda >= 0 else "cpu") # --------- # --- TRANSFORMATIONS train_transform = transforms.Compose([ RandomCrop(28, padding=4), ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ]) test_transform = transforms.Compose( [ToTensor(), transforms.Normalize((0.1307, ), (0.3081, ))]) # --------- # --- SCENARIO CREATION mnist_train = MNIST(root=expanduser("~") + "/.avalanche/data/mnist/", train=True, download=True, transform=train_transform) mnist_test = MNIST(root=expanduser("~") + "/.avalanche/data/mnist/", train=False, download=True, transform=test_transform) scenario = nc_benchmark(mnist_train, mnist_test, 5, task_labels=False, seed=1234) # --------- # MODEL CREATION model = SimpleMLP(num_classes=scenario.n_classes) interactive_logger = InteractiveLogger() tensorboard_logger = TensorboardLogger() eval_plugin = EvaluationPlugin( accuracy_metrics(minibatch=True, epoch=True, epoch_running=True, experience=True, stream=True), loss_metrics(minibatch=True, epoch=True, epoch_running=True, experience=True, stream=True), forgetting_metrics(experience=True, stream=True), StreamConfusionMatrix(), cpu_usage_metrics(minibatch=True, epoch=True, experience=True, stream=True), timing_metrics(minibatch=True, epoch=True, experience=True, stream=True), ram_usage_metrics(every=0.5, minibatch=True, epoch=True, experience=True, stream=True), gpu_usage_metrics(args.cuda, every=0.5, minibatch=True, epoch=True, experience=True, stream=True), disk_usage_metrics(minibatch=True, epoch=True, experience=True, stream=True), MAC_metrics(minibatch=True, epoch=True, experience=True), loggers=[interactive_logger, tensorboard_logger]) # CREATE THE STRATEGY INSTANCE (NAIVE) cl_strategy = Naive(model, SGD(model.parameters(), lr=0.001, momentum=0.9), CrossEntropyLoss(), train_mb_size=100, train_epochs=4, eval_mb_size=100, device=device, evaluator=eval_plugin) # TRAINING LOOP print('Starting experiment...') results = [] for experience in scenario.train_stream: print("Start of experience: ", experience.current_experience) print("Current Classes: ", experience.classes_in_this_experience) cl_strategy.train(experience) print('Training completed') print('Computing accuracy on the whole test set') results.append(cl_strategy.eval(scenario.test_stream))
# log to Tensorboard tb_logger = TensorboardLogger(f"./tb_data/{cur_time}-SimpleMLP/") # log to text file text_logger = TextLogger(open(f"./logs/{cur_time}-SimpleMLP.txt", "w+")) # print to stdout interactive_logger = InteractiveLogger() eval_plugin = EvaluationPlugin( accuracy_metrics(minibatch=True, epoch=True, experience=True, stream=True), loss_metrics(minibatch=True, epoch=True, experience=True, stream=True), timing_metrics(epoch=True, epoch_running=True), ExperienceForgetting(), cpu_usage_metrics(experience=True), StreamConfusionMatrix(num_classes=2, save_image=False), disk_usage_metrics(minibatch=True, epoch=True, experience=True, stream=True), loggers=[interactive_logger, text_logger, tb_logger], ) cl_strategy = GEM( model, optimizer=Adam(model.parameters()), patterns_per_exp=1470, criterion=CrossEntropyLoss(), train_mb_size=128, train_epochs=50, eval_mb_size=128, evaluator=eval_plugin, device=device, )
def main(): args = parser.parse_args() args.cuda = args.cuda == 'yes' args.disable_pbar = args.disable_pbar == 'yes' args.stable_sgd = args.stable_sgd == 'yes' print(f"args={vars(args)}") device = torch.device("cuda:0" if torch.cuda.is_available() and args.cuda else "cpu") print(f'Using device: {device}') # unique identifier uid = uuid.uuid4().hex if args.uid is None else args.uid now = str(datetime.datetime.now().date()) + "_" + ':'.join(str(datetime.datetime.now().time()).split(':')[:-1]) runname = 'T={}_id={}'.format(now, uid) if not args.resume else args.resume # Paths setupname = [args.strategy, args.exp_name, args.model, args.scenario] parentdir = os.path.join(args.save_path, '_'.join(setupname)) results_path = Path(os.path.join(parentdir, runname)) results_path.mkdir(parents=True, exist_ok=True) tb_log_dir = os.path.join(results_path, 'tb_run') # Group all runs # Eval results eval_metric = 'Top1_Acc_Stream/eval_phase/test_stream' eval_results_dir = results_path / eval_metric.split('/')[0] eval_results_dir.mkdir(parents=True, exist_ok=True) eval_result_files = [] # To avg over seeds seeds = [args.seed] if args.seed is not None else list(range(args.n_seeds)) for seed in seeds: # initialize seeds print("STARTING SEED {}/{}".format(seed, len(seeds) - 1)) set_seed(seed) # create scenario if args.scenario == 'smnist': inputsize = 28 * 28 scenario = SplitMNIST(n_experiences=5, return_task_id=False, seed=seed, fixed_class_order=[i for i in range(10)]) elif args.scenario == 'CIFAR10': scenario = SplitCIFAR10(n_experiences=5, return_task_id=False, seed=seed, fixed_class_order=[i for i in range(10)]) inputsize = (3, 32, 32) elif args.scenario == 'miniimgnet': scenario = SplitMiniImageNet(args.dset_rootpath, n_experiences=20, return_task_id=False, seed=seed, fixed_class_order=[i for i in range(100)]) inputsize = (3, 84, 84) else: raise ValueError("Wrong scenario name.") print(f"Scenario = {args.scenario}") if args.model == 'simple_mlp': model = MyMLP(input_size=inputsize, hidden_size=args.hs) elif args.model == 'resnet18': if not args.stable_sgd: assert args.drop_prob == 0 model = ResNet18(inputsize, scenario.n_classes, drop_prob=args.drop_prob) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=args.lr) # Paths eval_results_file = eval_results_dir / f'seed={seed}.csv' # LOGGING tb_logger = TensorboardLogger(tb_log_dir=tb_log_dir, tb_log_exp_name=f'seed={seed}.pt') # log to Tensorboard print_logger = TextLogger() if args.disable_pbar else InteractiveLogger() # print to stdout eval_logger = EvalTextLogger(metric_filter=eval_metric, file=open(eval_results_file, 'a')) eval_result_files.append(eval_results_file) # METRICS eval_plugin = EvaluationPlugin( accuracy_metrics(experience=True, stream=True), loss_metrics(minibatch=True, experience=True), ExperienceForgetting(), # Test only StreamConfusionMatrix(num_classes=scenario.n_classes, save_image=True), # LOG OTHER STATS # timing_metrics(epoch=True, experience=False), # cpu_usage_metrics(experience=True), # DiskUsageMonitor(), # MinibatchMaxRAM(), # GpuUsageMonitor(0), loggers=[print_logger, tb_logger, eval_logger]) plugins = None if args.strategy == 'replay': plugins = [RehRevPlugin(n_total_memories=args.mem_size, mode=args.replay_mode, # STEP-BACK aversion_steps=args.aversion_steps, aversion_lr=args.aversion_lr, stable_sgd=args.stable_sgd, # Stable SGD lr_decay=args.lr_decay, init_epochs=args.init_epochs # First task epochs )] # CREATE THE STRATEGY INSTANCE (NAIVE) strategy = Naive(model, optimizer, criterion, train_epochs=args.epochs, device=device, train_mb_size=args.bs, evaluator=eval_plugin, plugins=plugins ) # train on the selected scenario with the chosen strategy print('Starting experiment...') for experience in scenario.train_stream: if experience.current_experience == args.until_task: print("CUTTING OF TRAINING AT TASK ", experience.current_experience) break else: print("Start training on step ", experience.current_experience) strategy.train(experience) print("End training on step ", experience.current_experience) print('Computing accuracy on the test set') res = strategy.eval(scenario.test_stream[:args.until_task]) # Gathered by EvalLogger final_results_file = eval_results_dir / f'seed_summary.pt' stat_summarize(eval_result_files, final_results_file) print(f"[FILE:TB-RESULTS]: {tb_log_dir}") print(f"[FILE:FINAL-RESULTS]: {final_results_file}") print("FINISHED SCRIPT")
tb_logger = TensorboardLogger(tb_log_dir=path) # log to text file text_logger = TextLogger(open('log.txt', 'a')) # print to stdout interactive_logger = InteractiveLogger() eval_plugin = EvaluationPlugin( accuracy_metrics(minibatch=False, epoch=False, experience=True, stream=True), #loss_metrics(minibatch=True, epoch=True, experience=True, stream=True), #timing_metrics(epoch=True), #cpu_usage_metrics(experience=True), #forgetting_metrics(experience=True, stream=True), #StreamConfusionMatrix(num_classes=5, save_image=False), StreamConfusionMatrix(save_image=False), #disk_usage_metrics(minibatch=True, epoch=True, experience=True, stream=True) loggers=[interactive_logger, text_logger, tb_logger]) # CREATE THE STRATEGY INSTANCE (NAIVE) if (args.cl_strategy == "Naive"): cl_strategy = Naive(model, Adam(model.parameters(), lr=0.001), CrossEntropyLoss(), train_mb_size=args.batch_size, train_epochs=args.num_epochs, eval_mb_size=args.batch_size * 2, evaluator=eval_plugin, device=device) elif (args.cl_strategy == "SI"): cl_strategy = SynapticIntelligence(model,