Example #1
0
def main():
    parser = argparse.ArgumentParser(fromfile_prefix_chars="@")

    parser.add_argument("--pregenerated_data",
                        type=Path,
                        required=True,
                        help="The input train corpus.")

    parser.add_argument("--epochs", type=int, required=True)

    parser.add_argument("--bert_model", type=str, required=True)

    parser.add_argument("--bert_config_file",
                        type=str,
                        default="bert_config.json")
    parser.add_argument("--vocab_file", type=str, default="senti_vocab.txt")

    parser.add_argument('--output_dir', type=Path, required=True)

    parser.add_argument("--model_name", type=str, default="senti_base_model")

    parser.add_argument(
        "--reduce_memory",
        action="store_true",
        help=
        "Store training data as on-disc memmaps to massively reduce memory usage"
    )

    parser.add_argument("--world_size", type=int, default=4)
    parser.add_argument("--start_rank", type=int, default=0)
    parser.add_argument("--server", type=str, default="tcp://127.0.0.1:1234")

    parser.add_argument("--load_model", action="store_true")
    parser.add_argument("--load_model_name", type=str, default="large_model")

    parser.add_argument("--save_step", type=int, default=100000)
    parser.add_argument("--train_batch_size",
                        default=4,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=1e-4,
                        type=float,
                        help="The initial learning rate for Adam.")

    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")

    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumualte before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")

    args = parser.parse_args()

    assert args.pregenerated_data.is_dir(), \
        "--pregenerated_data should point to the folder of files made by pregenerate_training_data.py!"

    print("local_rank : ", args.local_rank)

    samples_per_epoch = []
    for i in range(args.epochs):
        epoch_file = args.pregenerated_data / f"epoch_{i}.json"
        metrics_file = args.pregenerated_data / f"epoch_{i}_metrics.json"
        if epoch_file.is_file() and metrics_file.is_file():
            metrics = json.loads(metrics_file.read_text())
            samples_per_epoch.append(metrics['num_training_examples'])
        else:
            if i == 0:
                exit("No training data was found!")
            print(
                f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs})."
            )
            print(
                "This script will loop over the available data, but training diversity may be negatively impacted."
            )
            num_data_epochs = i
            break
    else:
        num_data_epochs = args.epochs

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl',
                                             init_method=args.server,
                                             rank=args.local_rank +
                                             args.start_rank,
                                             world_size=args.world_size)
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if args.output_dir.is_dir() and list(args.output_dir.iterdir()):
        logger.warning(
            f"Output directory ({args.output_dir}) already exists and is not empty!"
        )
    args.output_dir.mkdir(parents=True, exist_ok=True)

    tokenizer = Tokenizer(
        os.path.join(args.bert_model, "senti_vocab.txt"),
        os.path.join(args.bert_model, "RoBERTa_Sentiment_kor"))

    total_train_examples = 0
    for i in range(args.epochs):
        # The modulo takes into account the fact that we may loop over limited epochs of data
        total_train_examples += samples_per_epoch[i % len(samples_per_epoch)]

    num_train_optimization_steps = math.ceil(total_train_examples /
                                             args.train_batch_size /
                                             args.gradient_accumulation_steps)
    if args.local_rank != -1:
        num_train_optimization_steps = math.ceil(
            num_train_optimization_steps / torch.distributed.get_world_size())

    # Prepare model
    config = BertConfig.from_json_file(
        os.path.join(args.bert_model, args.bert_config_file))
    logger.info('{}'.format(config))
    ###############################################
    # Load Model
    if args.load_model:
        load_model_name = os.path.join(args.output_dir, args.load_model_name)
        model = BertForPreTraining.from_pretrained(
            args.bert_model,
            state_dict=torch.load(load_model_name)["state_dict"])
    else:
        model = BertForPreTraining(config)
    ###############################################

    if args.fp16:
        model.half()
    model.to(device)

    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
            model = DDP(model)

        except ImportError:
            from torch.nn.parallel import DistributedDataParallel as DDP
            model = DDP(model,
                        device_ids=[args.local_rank],
                        output_device=args.local_rank)

    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)
        warmup_linear = WarmupLinearSchedule(
            warmup=args.warmup_proportion,
            t_total=num_train_optimization_steps)
    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)
    epoch0 = 0
    global_step = 0
    if args.load_model:
        ###############################################
        # Load Model
        logger.info(f"***** Load Model {args.load_model_name} *****")
        loaded_states = torch.load(os.path.join(args.output_dir,
                                                args.load_model_name),
                                   map_location=device)
        optimizer.load_state_dict(loaded_states["optimizer"])

        regex = re.compile(r'\d+epoch')
        epoch0 = int(
            regex.findall(args.load_model_name)[-1].replace('epoch', ''))
        logger.info('extract {} -> epoch0 : {}'.format(args.load_model_name,
                                                       epoch0))

        ###############################################

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {total_train_examples}")
    logger.info("  Batch size = %d", args.train_batch_size)
    logger.info("  Num steps = %d", num_train_optimization_steps)

    model.train()
    # model.eval()
    for epoch in range(epoch0, args.epochs):
        epoch_dataset = PregeneratedDataset(
            epoch=epoch,
            training_path=args.pregenerated_data,
            tokenizer=tokenizer,
            num_data_epochs=num_data_epochs,
            reduce_memory=args.reduce_memory)
        if args.local_rank == -1:
            train_sampler = RandomSampler(epoch_dataset)
        else:
            train_sampler = DistributedSampler(epoch_dataset)

        train_dataloader = DataLoader(epoch_dataset,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)
        tr_loss = 0
        nb_tr_examples, nb_tr_steps = 0, 0
        with tqdm(total=len(train_dataloader), desc='training..') as pbar:
            for step, batch in enumerate(train_dataloader):

                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, lm_label_ids = batch

                loss = model(input_ids, input_mask, lm_label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                tr_loss += loss.item()

                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                pbar.update(1)
                mean_loss = tr_loss * args.gradient_accumulation_steps / nb_tr_steps

                if (step + 1) % 50 == 0:
                    pbar.set_description(
                        "Epoch = {}, global_step = {}, loss = {:.5f}".format(
                            epoch, global_step + 1, mean_loss))
                    logger.info(
                        "Epoch = {}, global_step = {}, loss = {:.5f}".format(
                            epoch, global_step + 1, mean_loss))

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if (step + 1) % args.save_step == 0:
                    if args.local_rank == -1 or args.local_rank == 0:
                        logger.info(
                            "** ** * Saving {} - step model ** ** * ".format(
                                global_step))
                        output_model_file = os.path.join(
                            args.output_dir,
                            args.model_name + "_{}step".format(global_step))
                        model_to_save = model.module if hasattr(
                            model, 'module') else model
                        state = {
                            "state_dict": model_to_save.state_dict(),
                            "optimizer": optimizer.state_dict()
                        }
                        torch.save(state, output_model_file)

        if args.local_rank == -1 or args.local_rank == 0:
            logger.info(
                "** ** * Saving {} - epoch model ** ** * ".format(epoch))
            output_model_file = os.path.join(
                args.output_dir,
                args.model_name + "_{}epoch".format(epoch + 1))
            model_to_save = model.module if hasattr(model, 'module') else model
            state = {
                "state_dict": model_to_save.state_dict(),
                "optimizer": optimizer.state_dict()
            }
            torch.save(state, output_model_file)
Example #2
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument("--negative_weight", default=1., type=float)
    parser.add_argument("--neutral_words_file", default='data/identity.csv')

    # if true, use test data instead of val data
    parser.add_argument("--test", action='store_true')

    # Explanation specific arguments below

    # whether run explanation algorithms
    parser.add_argument("--explain",
                        action='store_true',
                        help='if true, explain test set predictions')
    parser.add_argument("--debug", action='store_true')

    # which algorithm to run
    parser.add_argument("--algo", choices=['soc'])

    # the output filename without postfix
    parser.add_argument("--output_filename", default='temp.tmp')

    # see utils/config.py
    parser.add_argument("--use_padding_variant", action='store_true')
    parser.add_argument("--mask_outside_nb", action='store_true')
    parser.add_argument("--nb_range", type=int)
    parser.add_argument("--sample_n", type=int)

    # whether use explanation regularization
    parser.add_argument("--reg_explanations", action='store_true')
    parser.add_argument("--reg_strength", type=float)
    parser.add_argument("--reg_mse", action='store_true')

    # whether discard other neutral words during regularization. default: False
    parser.add_argument("--discard_other_nw",
                        action='store_false',
                        dest='keep_other_nw')

    # whether remove neutral words when loading datasets
    parser.add_argument("--remove_nw", action='store_true')

    # if true, generate hierarchical explanations instead of word level outputs.
    # Only useful when the --explain flag is also added.
    parser.add_argument("--hiex", action='store_true')
    parser.add_argument("--hiex_tree_height", default=5, type=int)

    # whether add the sentence itself to the sample set in SOC
    parser.add_argument("--hiex_add_itself", action='store_true')

    # the directory where the lm is stored
    parser.add_argument("--lm_dir", default='runs/lm')

    # if configured, only generate explanations for instances with given line numbers
    parser.add_argument("--hiex_idxs", default=None)
    # if true, use absolute values of explanations for hierarchical clustering
    parser.add_argument("--hiex_abs", action='store_true')

    # if either of the two is true, only generate explanations for positive / negative instances
    parser.add_argument("--only_positive", action='store_true')
    parser.add_argument("--only_negative", action='store_true')

    # stop after generating x explanation
    parser.add_argument("--stop", default=100000000, type=int)

    # early stopping with decreasing learning rate. 0: direct exit when validation F1 decreases
    parser.add_argument("--early_stop", default=5, type=int)

    # other external arguments originally here in pytorch_transformers

    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--validate_steps",
                        default=200,
                        type=int,
                        help="validate once for how many steps")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()

    combine_args(configs, args)
    args = configs

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {
        'gab': GabProcessor,
        'ws': WSProcessor,
        'nyt': NytProcessor,
        'MT': MTProcessor,
        #'multi-label': multilabel_Processor,
    }

    output_modes = {
        'gab': 'classification',
        'ws': 'classification',
        'nyt': 'classification'
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    #if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
    #    raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    # save configs
    f = open(os.path.join(args.output_dir, 'args.json'), 'w')
    json.dump(args.__dict__, f, indent=4)
    f.close()

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)
    processor = processors[task_name](configs, tokenizer=tokenizer)
    output_mode = output_modes[task_name]

    label_list = processor.get_labels()
    num_labels = len(label_list)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
            args.local_rank))
    if args.do_train:
        model = BertForSequenceClassification.from_pretrained(
            args.bert_model, cache_dir=cache_dir, num_labels=num_labels)

    else:
        model = BertForSequenceClassification.from_pretrained(
            args.output_dir, num_labels=num_labels)
    model.to(device)

    if args.fp16:
        model.half()

    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    # elif n_gpu > 1:
    #     model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)
        warmup_linear = WarmupLinearSchedule(
            warmup=args.warmup_proportion,
            t_total=num_train_optimization_steps)

    else:
        if args.do_train:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

    global_step = 0
    nb_tr_steps = 0
    tr_loss, tr_reg_loss = 0, 0
    tr_reg_cnt = 0
    epoch = -1
    val_best_f1 = -1
    val_best_loss = 1e10
    early_stop_countdown = args.early_stop

    if args.reg_explanations:
        train_lm_dataloder = processor.get_dataloader('train',
                                                      configs.train_batch_size)
        dev_lm_dataloader = processor.get_dataloader('dev',
                                                     configs.train_batch_size)
        explainer = SamplingAndOcclusionExplain(
            model,
            configs,
            tokenizer,
            device=device,
            vocab=tokenizer.vocab,
            train_dataloader=train_lm_dataloder,
            dev_dataloader=dev_lm_dataloader,
            lm_dir=args.lm_dir,
            output_path=os.path.join(configs.output_dir,
                                     configs.output_filename),
        )
    else:
        explainer = None

    if args.do_train:
        epoch = 0
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer, output_mode,
                                                      configs)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.float)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        class_weight = torch.FloatTensor([args.negative_weight, 1]).to(device)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch

                # define a new function to compute loss values for both output_modes
                logits = model(input_ids, segment_ids, input_mask, labels=None)

                if output_mode == "classification":
                    loss_fct = CrossEntropyLoss(class_weight)
                    loss = loss_fct(logits.view(-1, num_labels),
                                    label_ids.view(-1))
                elif output_mode == "regression":
                    loss_fct = MSELoss()
                    loss = loss_fct(logits.view(-1), label_ids.view(-1))

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                tr_loss += loss.item()
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                # regularize explanations
                # NOTE: backward performed inside this function to prevent OOM

                if args.reg_explanations:
                    reg_loss, reg_cnt = explainer.compute_explanation_loss(
                        input_ids,
                        input_mask,
                        segment_ids,
                        label_ids,
                        do_backprop=True)
                    tr_reg_loss += reg_loss  # float
                    tr_reg_cnt += reg_cnt

                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if global_step % args.validate_steps == 0:
                    val_result = validate(args, model, processor, tokenizer,
                                          output_mode, label_list, device,
                                          num_labels, task_name, tr_loss,
                                          global_step, epoch, explainer)
                    val_acc, val_f1 = val_result['acc'], val_result['f1']
                    if val_f1 > val_best_f1:
                        val_best_f1 = val_f1
                        if args.local_rank == -1 or torch.distributed.get_rank(
                        ) == 0:
                            save_model(args, model, tokenizer, num_labels)
                    else:
                        # halve the learning rate
                        for param_group in optimizer.param_groups:
                            param_group['lr'] *= 0.5
                        early_stop_countdown -= 1
                        logger.info(
                            "Reducing learning rate... Early stop countdown %d"
                            % early_stop_countdown)
                    if early_stop_countdown < 0:
                        break
            if early_stop_countdown < 0:
                break
            epoch += 1

            # training finish ############################

    # if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
    #     if not args.explain:
    #         args.test = True
    #         validate(args, model, processor, tokenizer, output_mode, label_list, device, num_labels,
    #                  task_name, tr_loss, global_step=0, epoch=-1, explainer=explainer)
    #     else:
    #         args.test = True
    #         explain(args, model, processor, tokenizer, output_mode, label_list, device)
    if not args.explain:
        args.test = True
        print('--Test_args.test: %s' % str(args.test))  #Test_args.test: True
        validate(args,
                 model,
                 processor,
                 tokenizer,
                 output_mode,
                 label_list,
                 device,
                 num_labels,
                 task_name,
                 tr_loss,
                 global_step=888,
                 epoch=-1,
                 explainer=explainer)
        args.test = False
    else:
        print('--Test_args.test: %s' % str(args.test))  # Test_args.test: True
        args.test = True
        explain(args, model, processor, tokenizer, output_mode, label_list,
                device)
        args.test = False
Example #3
0
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        help="The output directory where the model checkpoints will be written."
    )

    parser.add_argument("--train_file", default=None, type=str)
    parser.add_argument("--val_file", default=None, type=str)
    parser.add_argument("--test_file", default=None, type=str)
    parser.add_argument("--test_output", default=None, type=str)
    parser.add_argument("--label_vocab", default=None, type=str, required=True)
    parser.add_argument("--punc_set", default='PU', type=str)
    parser.add_argument("--has_confidence", action='store_true')
    parser.add_argument("--only_save_bert", action='store_true')

    parser.add_argument("--arc_space", default=512, type=int)
    parser.add_argument("--type_space", default=128, type=int)

    parser.add_argument("--log_file", default=None, type=str)

    ## Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_predict",
                        action='store_true',
                        help="Whether to run predict on the test set.")
    parser.add_argument("--do_greedy_predict",
                        action='store_true',
                        help="Whether to run predict on the test set.")
    parser.add_argument("--do_ensemble_predict",
                        action='store_true',
                        help="Whether to run predict on the test set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--test_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for test.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")

    args = parser.parse_args()

    if args.log_file is None:
        logging.basicConfig(
            format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
            datefmt='%m/%d/%Y %H:%M:%S',
            level=logging.INFO)
    else:
        logging.basicConfig(
            format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
            filename=args.log_file,
            filemode='w',
            datefmt='%m/%d/%Y %H:%M:%S',
            level=logging.INFO)

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_predict and not args.do_greedy_predict and not args.do_ensemble_predict:
        raise ValueError(
            "At least one of `do_train` or `do_predict` must be True.")

    if args.do_train:
        assert args.output_dir is not None

    if args.do_train and os.path.exists(args.output_dir) and os.listdir(
            args.output_dir):
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if args.do_train and not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    label_vocab, label_vocab2idx = load_label_vocab(args.label_vocab)

    punc_set = set(
        args.punc_set.split(',')) if args.punc_set is not None else None

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        assert args.train_file is not None
        train_examples = read_conll_examples(
            args.train_file,
            is_training=True,
            has_confidence=args.has_confidence)

        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    if args.do_train or args.do_predict or args.do_greedy_predict:
        # load the pretrained model
        tokenizer = BertTokenizer.from_pretrained(
            args.bert_model, do_lower_case=args.do_lower_case)
        model = BertForDependencyParsing.from_pretrained(
            args.bert_model,
            cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE),
                                   'distributed_{}'.format(args.local_rank)),
            arc_space=args.arc_space,
            type_space=args.type_space,
            num_labels=len(label_vocab))

        if args.fp16:
            model.half()
        model.to(device)
        if args.local_rank != -1:
            try:
                from apex.parallel import DistributedDataParallel as DDP
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            model = DDP(model)
        elif n_gpu > 1:
            model = torch.nn.DataParallel(model)

        #
        parser = model.module if hasattr(model, 'module') else model
    elif args.do_ensemble_predict:
        bert_models = args.bert_model.split(',')
        assert len(bert_models) > 1
        tokenizer = BertTokenizer.from_pretrained(
            bert_models[0], do_lower_case=args.do_lower_case)
        models = []
        for bm in bert_models:
            model = BertForDependencyParsing.from_pretrained(
                bm,
                cache_dir=os.path.join(
                    str(PYTORCH_PRETRAINED_BERT_CACHE),
                    'distributed_{}'.format(args.local_rank)),
                arc_space=args.arc_space,
                type_space=args.type_space,
                num_labels=len(label_vocab))
            model.to(device)
            model.eval()
            models.append(model)
        parser = models[0].module if hasattr(models[0],
                                             'module') else models[0]

    # Prepare optimizer
    if args.do_train:
        param_optimizer = list(model.named_parameters())

        # hack to remove pooler, which is not used
        # thus it produce None grad that break apex
        # !!! NOTE why?
        param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer,
                                           static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(
                warmup=args.warmup_proportion,
                t_total=num_train_optimization_steps)
        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

    # start training loop
    if args.do_train:
        global_step = 0
        train_features = convert_examples_to_features(
            train_examples,
            tokenizer,
            args.max_seq_length,
            label_vocab2idx,
            True,
            has_confidence=args.has_confidence)

        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.float32)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_lengths = torch.tensor([f.seq_len for f in train_features],
                                   dtype=torch.long)
        all_heads = torch.tensor([f.heads for f in train_features],
                                 dtype=torch.long)
        all_labels = torch.tensor([f.labels for f in train_features],
                                  dtype=torch.long)

        if args.has_confidence:
            all_confidence = torch.tensor(
                [f.confidence for f in train_features], dtype=torch.float32)
            train_data = TensorDataset(all_input_ids, all_input_mask,
                                       all_segment_ids, all_lengths, all_heads,
                                       all_labels, all_confidence)
        else:
            train_data = TensorDataset(all_input_ids, all_input_mask,
                                       all_segment_ids, all_lengths, all_heads,
                                       all_labels)

        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)

        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        if args.do_eval:
            assert args.val_file is not None
            eval_examples = read_conll_examples(args.val_file,
                                                is_training=False,
                                                has_confidence=False)
            eval_features = convert_examples_to_features(eval_examples,
                                                         tokenizer,
                                                         args.max_seq_length,
                                                         label_vocab2idx,
                                                         False,
                                                         has_confidence=False)
            logger.info("  Num examples = %d", len(eval_examples))
            logger.info("  Batch size = %d", args.eval_batch_size)

            all_example_ids = torch.tensor(
                [f.example_id for f in eval_features], dtype=torch.long)
            all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                         dtype=torch.long)
            all_input_mask = torch.tensor(
                [f.input_mask for f in eval_features], dtype=torch.float32)
            all_segment_ids = torch.tensor(
                [f.segment_ids for f in eval_features], dtype=torch.long)
            all_lengths = torch.tensor([f.seq_len for f in eval_features],
                                       dtype=torch.long)
            eval_data = TensorDataset(all_input_ids, all_input_mask,
                                      all_segment_ids, all_lengths,
                                      all_example_ids)

            # Run prediction for full data
            eval_sampler = SequentialSampler(eval_data)
            eval_dataloader = DataLoader(eval_data,
                                         sampler=eval_sampler,
                                         batch_size=args.eval_batch_size)

        best_uas = 0
        best_las = 0
        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
            logger.info("Training epoch: {}".format(epoch))
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            model.train()
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                if args.has_confidence:
                    input_ids, input_mask, segment_ids, lengths, heads, label_ids, confidence = batch
                else:
                    confidence = None
                    input_ids, input_mask, segment_ids, lengths, heads, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, heads,
                             label_ids, confidence)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.fp16 and args.loss_scale != 1.0:
                    # rescale loss for fp16 training
                    # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
                    loss = loss * args.loss_scale
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if global_step % 100 == 0:
                    logger.info("Training loss: {}, global step: {}".format(
                        tr_loss / nb_tr_steps, global_step))

            # we eval every epoch
            if args.do_eval and (args.local_rank == -1
                                 or torch.distributed.get_rank() == 0):
                logger.info("***** Running evaluation *****")

                model.eval()

                eval_predict_words, eval_predict_postags, eval_predict_heads, eval_predict_labels = [],[],[],[]

                for input_ids, input_mask, segment_ids, lengths, example_ids in tqdm(
                        eval_dataloader, desc="Evaluating"):
                    example_ids = example_ids.numpy()

                    batch_words = [
                        eval_features[eid].example.sentence
                        for eid in example_ids
                    ]
                    batch_postags = [
                        eval_features[eid].example.postags
                        for eid in example_ids
                    ]
                    batch_word_index = [
                        eval_features[eid].word_index for eid in example_ids
                    ]  # token -> word
                    batch_token_starts = [
                        eval_features[eid].token_starts for eid in example_ids
                    ]  # word -> token start
                    batch_heads = [
                        eval_features[eid].example.heads for eid in example_ids
                    ]

                    input_ids = input_ids.to(device)
                    input_mask = input_mask.to(device)
                    segment_ids = segment_ids.to(device)
                    heads = heads.to(device)
                    label_ids = label_ids.to(device)

                    with torch.no_grad():
                        # tmp_eval_loss = model(input_ids, segment_ids, input_mask, heads, label_ids)
                        energy = model(input_ids, segment_ids, input_mask)

                    heads_pred, labels_pred = parser.decode_MST(
                        energy.cpu().numpy(),
                        lengths.numpy(),
                        leading_symbolic=0,
                        labeled=True)

                    # we convert the subword dependency parsing to word dependency parsing just the word and token start map
                    pred_heads = []
                    pred_labels = []
                    for i in range(len(batch_word_index)):
                        word_index = batch_word_index[i]
                        token_starts = batch_token_starts[i]
                        hpd = []
                        lpd = []
                        for j in range(len(token_starts)):
                            if j == 0:  #[CLS]
                                continue
                            elif j == len(token_starts) - 1:  # [SEP]
                                continue
                            else:
                                hpd.append(
                                    word_index[heads_pred[i, token_starts[j]]])
                                lpd.append(
                                    label_vocab[labels_pred[i,
                                                            token_starts[j]]])
                        pred_heads.append(hpd)
                        pred_labels.append(lpd)

                    eval_predict_words += batch_words
                    eval_predict_postags += batch_postags
                    eval_predict_heads += pred_heads
                    eval_predict_labels += pred_labels

                eval_output_file = os.path.join(args.output_dir, 'eval.pred')

                write_conll_examples(eval_predict_words, eval_predict_postags,
                                     eval_predict_heads, eval_predict_labels,
                                     eval_output_file)

                eval_f = os.popen(
                    "python scripts/eval_nlpcc_dp.py " + args.val_file + " " +
                    eval_output_file, "r")
                result_text = eval_f.read().strip()
                logger.info("***** Eval results *****")
                logger.info(result_text)
                eval_f.close()
                eval_res = re.findall(
                    r'UAS = \d+/\d+ = ([\d\.]+), LAS = \d+/\d+ = ([\d\.]+)',
                    result_text)
                assert len(eval_res) > 0
                eval_res = eval_res[0]

                eval_uas = float(eval_res[0])
                eval_las = float(eval_res[1])

                # save model
                if best_las < eval_las or (eval_las == best_las
                                           and best_uas < eval_uas):
                    best_uas = eval_uas
                    best_las = eval_las

                    logger.info(
                        "new best uas  %.2f%% las %.2f%%, saving models.",
                        best_uas, best_las)

                    # Save a trained model, configuration and tokenizer
                    model_to_save = model.module if hasattr(
                        model,
                        'module') else model  # Only save the model it-self

                    # If we save using the predefined names, we can load using `from_pretrained`
                    output_model_file = os.path.join(args.output_dir,
                                                     WEIGHTS_NAME)
                    output_config_file = os.path.join(args.output_dir,
                                                      CONFIG_NAME)

                    model_dict = model_to_save.state_dict()
                    if args.only_save_bert:
                        model_dict = {
                            k: v
                            for k, v in model_dict.items() if 'bert.' in k
                        }

                    torch.save(model_dict, output_model_file)
                    model_to_save.config.to_json_file(output_config_file)
                    tokenizer.save_vocabulary(args.output_dir)

    # start predict
    if args.do_predict:
        model.eval()
        assert args.test_file is not None
        test_examples = read_conll_examples(args.test_file,
                                            is_training=False,
                                            has_confidence=False)
        test_features = convert_examples_to_features(test_examples,
                                                     tokenizer,
                                                     args.max_seq_length,
                                                     label_vocab2idx,
                                                     False,
                                                     has_confidence=False)
        logger.info("***** Running prediction *****")
        logger.info("  Num examples = %d", len(test_examples))
        logger.info("  Batch size = %d", args.test_batch_size)
        all_example_ids = torch.tensor([f.example_id for f in test_features],
                                       dtype=torch.long)
        all_input_ids = torch.tensor([f.input_ids for f in test_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in test_features],
                                      dtype=torch.float32)
        all_segment_ids = torch.tensor([f.segment_ids for f in test_features],
                                       dtype=torch.long)
        all_lengths = torch.tensor([f.seq_len for f in test_features],
                                   dtype=torch.long)

        test_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_lengths,
                                  all_example_ids)

        # Run prediction for full data
        test_sampler = SequentialSampler(test_data)
        test_dataloader = DataLoader(test_data,
                                     sampler=test_sampler,
                                     batch_size=args.test_batch_size)

        test_predict_words, test_predict_postags, test_predict_heads, test_predict_labels = [],[],[],[]
        for batch_id, batch in enumerate(
                tqdm(test_dataloader, desc="Predicting")):
            input_ids, input_mask, segment_ids, lengths, example_ids = batch
            example_ids = example_ids.numpy()
            batch_words = [
                test_features[eid].example.sentence for eid in example_ids
            ]
            batch_postags = [
                test_features[eid].example.postags for eid in example_ids
            ]
            batch_word_index = [
                test_features[eid].word_index for eid in example_ids
            ]  # token -> word
            batch_token_starts = [
                test_features[eid].token_starts for eid in example_ids
            ]  # word -> token start

            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            lengths = lengths.numpy()

            with torch.no_grad():
                energy = model(input_ids, segment_ids, input_mask)

            heads_pred, labels_pred = parser.decode_MST(energy.cpu().numpy(),
                                                        lengths,
                                                        leading_symbolic=0,
                                                        labeled=True)

            pred_heads = []
            pred_labels = []
            for i in range(len(batch_word_index)):
                word_index = batch_word_index[i]
                token_starts = batch_token_starts[i]
                hpd = []
                lpd = []
                for j in range(len(token_starts)):
                    if j == 0:  #[CLS]
                        continue
                    elif j == len(token_starts) - 1:  # [SEP]
                        continue
                    else:
                        hpd.append(word_index[heads_pred[i, token_starts[j]]])
                        lpd.append(label_vocab[labels_pred[i,
                                                           token_starts[j]]])
                pred_heads.append(hpd)
                pred_labels.append(lpd)

            test_predict_words += batch_words
            test_predict_postags += batch_postags
            test_predict_heads += pred_heads
            test_predict_labels += pred_labels

        assert args.test_output is not None
        write_conll_examples(test_predict_words, test_predict_postags,
                             test_predict_heads, test_predict_labels,
                             args.test_output)

    if args.do_greedy_predict:
        model.eval()
        assert args.test_file is not None
        test_examples = read_conll_examples(args.test_file,
                                            is_training=False,
                                            has_confidence=False)
        test_features = convert_examples_to_features(test_examples,
                                                     tokenizer,
                                                     args.max_seq_length,
                                                     label_vocab2idx,
                                                     False,
                                                     has_confidence=False)
        logger.info("***** Running prediction *****")
        logger.info("  Num examples = %d", len(test_examples))
        logger.info("  Batch size = %d", args.test_batch_size)
        all_example_ids = torch.tensor([f.example_id for f in test_features],
                                       dtype=torch.long)
        all_input_ids = torch.tensor([f.input_ids for f in test_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in test_features],
                                      dtype=torch.float32)
        all_segment_ids = torch.tensor([f.segment_ids for f in test_features],
                                       dtype=torch.long)
        all_lengths = torch.tensor([f.seq_len for f in test_features],
                                   dtype=torch.long)

        test_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_lengths,
                                  all_example_ids)

        # Run prediction for full data
        test_sampler = SequentialSampler(test_data)
        test_dataloader = DataLoader(test_data,
                                     sampler=test_sampler,
                                     batch_size=args.test_batch_size)

        test_predict_words, test_predict_postags, test_predict_heads, test_predict_labels = [],[],[],[]
        for batch_id, batch in enumerate(
                tqdm(test_dataloader, desc="Predicting")):
            input_ids, input_mask, segment_ids, lengths, example_ids = batch
            example_ids = example_ids.numpy()
            batch_words = [
                test_features[eid].example.sentence for eid in example_ids
            ]
            batch_postags = [
                test_features[eid].example.postags for eid in example_ids
            ]
            batch_word_index = [
                test_features[eid].word_index for eid in example_ids
            ]  # token -> word
            batch_token_starts = [
                test_features[eid].token_starts for eid in example_ids
            ]  # word -> token start

            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            lengths = lengths.numpy()

            with torch.no_grad():
                heads_pred, labels_pred = model(input_ids,
                                                segment_ids,
                                                input_mask,
                                                greedy_inference=True)

            pred_heads = []
            pred_labels = []
            for i in range(len(batch_word_index)):
                word_index = batch_word_index[i]
                token_starts = batch_token_starts[i]
                hpd = []
                lpd = []
                for j in range(len(token_starts)):
                    if j == 0:  #[CLS]
                        continue
                    elif j == len(token_starts) - 1:  # [SEP]
                        continue
                    else:
                        hpd.append(word_index[heads_pred[i, token_starts[j]]])
                        lpd.append(label_vocab[labels_pred[i,
                                                           token_starts[j]]])
                pred_heads.append(hpd)
                pred_labels.append(lpd)

            test_predict_words += batch_words
            test_predict_postags += batch_postags
            test_predict_heads += pred_heads
            test_predict_labels += pred_labels

        assert args.test_output is not None
        write_conll_examples(test_predict_words, test_predict_postags,
                             test_predict_heads, test_predict_labels,
                             args.test_output)

    if args.do_ensemble_predict:
        assert args.test_file is not None
        test_examples = read_conll_examples(args.test_file,
                                            is_training=False,
                                            has_confidence=False)
        test_features = convert_examples_to_features(test_examples,
                                                     tokenizer,
                                                     args.max_seq_length,
                                                     label_vocab2idx,
                                                     False,
                                                     has_confidence=False)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(test_examples))
        logger.info("  Batch size = %d", args.test_batch_size)
        all_example_ids = torch.tensor([f.example_id for f in test_features],
                                       dtype=torch.long)
        all_input_ids = torch.tensor([f.input_ids for f in test_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in test_features],
                                      dtype=torch.float32)
        all_segment_ids = torch.tensor([f.segment_ids for f in test_features],
                                       dtype=torch.long)
        all_lengths = torch.tensor([f.seq_len for f in test_features],
                                   dtype=torch.long)

        test_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_lengths,
                                  all_example_ids)

        # Run prediction for full data
        test_sampler = SequentialSampler(test_data)
        test_dataloader = DataLoader(test_data,
                                     sampler=test_sampler,
                                     batch_size=args.test_batch_size)

        test_predict_words, test_predict_postags, test_predict_heads, test_predict_labels = [],[],[],[]
        for batch_id, batch in enumerate(
                tqdm(test_dataloader, desc="Predicting")):
            input_ids, input_mask, segment_ids, lengths, example_ids = batch
            example_ids = example_ids.numpy()
            batch_words = [
                test_features[eid].example.sentence for eid in example_ids
            ]
            batch_postags = [
                test_features[eid].example.postags for eid in example_ids
            ]
            batch_word_index = [
                test_features[eid].word_index for eid in example_ids
            ]  # token -> word
            batch_token_starts = [
                test_features[eid].token_starts for eid in example_ids
            ]  # word -> token start

            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            lengths = lengths.numpy()

            with torch.no_grad():
                energy_sum = None
                for model in models:
                    energy = model(input_ids, segment_ids, input_mask)
                    if energy_sum is None:
                        energy_sum = energy
                    else:
                        energy_sum = energy_sum + energy

                energy_sum = energy_sum / len(models)

            heads_pred, labels_pred = parser.decode_MST(
                energy_sum.cpu().numpy(),
                lengths,
                leading_symbolic=0,
                labeled=True)

            pred_heads = []
            pred_labels = []
            for i in range(len(batch_word_index)):
                word_index = batch_word_index[i]
                token_starts = batch_token_starts[i]
                hpd = []
                lpd = []
                for j in range(len(token_starts)):
                    if j == 0:  #[CLS]
                        continue
                    elif j == len(token_starts) - 1:  # [SEP]
                        continue
                    else:
                        hpd.append(word_index[heads_pred[i, token_starts[j]]])
                        lpd.append(label_vocab[labels_pred[i,
                                                           token_starts[j]]])
                pred_heads.append(hpd)
                pred_labels.append(lpd)

            test_predict_words += batch_words
            test_predict_postags += batch_postags
            test_predict_heads += pred_heads
            test_predict_labels += pred_labels

        assert args.test_output is not None
        write_conll_examples(test_predict_words, test_predict_postags,
                             test_predict_heads, test_predict_labels,
                             args.test_output)