def main(): parser = argparse.ArgumentParser(fromfile_prefix_chars="@") parser.add_argument("--pregenerated_data", type=Path, required=True, help="The input train corpus.") parser.add_argument("--epochs", type=int, required=True) parser.add_argument("--bert_model", type=str, required=True) parser.add_argument("--bert_config_file", type=str, default="bert_config.json") parser.add_argument("--vocab_file", type=str, default="senti_vocab.txt") parser.add_argument('--output_dir', type=Path, required=True) parser.add_argument("--model_name", type=str, default="senti_base_model") parser.add_argument( "--reduce_memory", action="store_true", help= "Store training data as on-disc memmaps to massively reduce memory usage" ) parser.add_argument("--world_size", type=int, default=4) parser.add_argument("--start_rank", type=int, default=0) parser.add_argument("--server", type=str, default="tcp://127.0.0.1:1234") parser.add_argument("--load_model", action="store_true") parser.add_argument("--load_model_name", type=str, default="large_model") parser.add_argument("--save_step", type=int, default=100000) parser.add_argument("--train_batch_size", default=4, type=int, help="Total batch size for training.") parser.add_argument("--learning_rate", default=1e-4, type=float, help="The initial learning rate for Adam.") parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument( "--do_lower_case", action='store_true', help= "Whether to lower case the input text. True for uncased models, False for cased models." ) parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumualte before performing a backward/update pass." ) parser.add_argument( '--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument( '--loss_scale', type=float, default=0, help= "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") args = parser.parse_args() assert args.pregenerated_data.is_dir(), \ "--pregenerated_data should point to the folder of files made by pregenerate_training_data.py!" print("local_rank : ", args.local_rank) samples_per_epoch = [] for i in range(args.epochs): epoch_file = args.pregenerated_data / f"epoch_{i}.json" metrics_file = args.pregenerated_data / f"epoch_{i}_metrics.json" if epoch_file.is_file() and metrics_file.is_file(): metrics = json.loads(metrics_file.read_text()) samples_per_epoch.append(metrics['num_training_examples']) else: if i == 0: exit("No training data was found!") print( f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs})." ) print( "This script will loop over the available data, but training diversity may be negatively impacted." ) num_data_epochs = i break else: num_data_epochs = args.epochs if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl', init_method=args.server, rank=args.local_rank + args.start_rank, world_size=args.world_size) logger.info( "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}". format(device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError( "Invalid gradient_accumulation_steps parameter: {}, should be >= 1" .format(args.gradient_accumulation_steps)) args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if args.output_dir.is_dir() and list(args.output_dir.iterdir()): logger.warning( f"Output directory ({args.output_dir}) already exists and is not empty!" ) args.output_dir.mkdir(parents=True, exist_ok=True) tokenizer = Tokenizer( os.path.join(args.bert_model, "senti_vocab.txt"), os.path.join(args.bert_model, "RoBERTa_Sentiment_kor")) total_train_examples = 0 for i in range(args.epochs): # The modulo takes into account the fact that we may loop over limited epochs of data total_train_examples += samples_per_epoch[i % len(samples_per_epoch)] num_train_optimization_steps = math.ceil(total_train_examples / args.train_batch_size / args.gradient_accumulation_steps) if args.local_rank != -1: num_train_optimization_steps = math.ceil( num_train_optimization_steps / torch.distributed.get_world_size()) # Prepare model config = BertConfig.from_json_file( os.path.join(args.bert_model, args.bert_config_file)) logger.info('{}'.format(config)) ############################################### # Load Model if args.load_model: load_model_name = os.path.join(args.output_dir, args.load_model_name) model = BertForPreTraining.from_pretrained( args.bert_model, state_dict=torch.load(load_model_name)["state_dict"]) else: model = BertForPreTraining(config) ############################################### if args.fp16: model.half() model.to(device) if args.local_rank != -1: try: from apex.parallel import DistributedDataParallel as DDP model = DDP(model) except ImportError: from torch.nn.parallel import DistributedDataParallel as DDP model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank) elif n_gpu > 1: model = torch.nn.DataParallel(model) param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01 }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] if args.fp16: try: from apex.optimizers import FP16_Optimizer from apex.optimizers import FusedAdam except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training." ) optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.learning_rate, bias_correction=False, max_grad_norm=1.0) if args.loss_scale == 0: optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) warmup_linear = WarmupLinearSchedule( warmup=args.warmup_proportion, t_total=num_train_optimization_steps) else: optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=num_train_optimization_steps) epoch0 = 0 global_step = 0 if args.load_model: ############################################### # Load Model logger.info(f"***** Load Model {args.load_model_name} *****") loaded_states = torch.load(os.path.join(args.output_dir, args.load_model_name), map_location=device) optimizer.load_state_dict(loaded_states["optimizer"]) regex = re.compile(r'\d+epoch') epoch0 = int( regex.findall(args.load_model_name)[-1].replace('epoch', '')) logger.info('extract {} -> epoch0 : {}'.format(args.load_model_name, epoch0)) ############################################### logger.info("***** Running training *****") logger.info(f" Num examples = {total_train_examples}") logger.info(" Batch size = %d", args.train_batch_size) logger.info(" Num steps = %d", num_train_optimization_steps) model.train() # model.eval() for epoch in range(epoch0, args.epochs): epoch_dataset = PregeneratedDataset( epoch=epoch, training_path=args.pregenerated_data, tokenizer=tokenizer, num_data_epochs=num_data_epochs, reduce_memory=args.reduce_memory) if args.local_rank == -1: train_sampler = RandomSampler(epoch_dataset) else: train_sampler = DistributedSampler(epoch_dataset) train_dataloader = DataLoader(epoch_dataset, sampler=train_sampler, batch_size=args.train_batch_size) tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 with tqdm(total=len(train_dataloader), desc='training..') as pbar: for step, batch in enumerate(train_dataloader): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, lm_label_ids = batch loss = model(input_ids, input_mask, lm_label_ids) if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: optimizer.backward(loss) else: loss.backward() tr_loss += loss.item() nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 pbar.update(1) mean_loss = tr_loss * args.gradient_accumulation_steps / nb_tr_steps if (step + 1) % 50 == 0: pbar.set_description( "Epoch = {}, global_step = {}, loss = {:.5f}".format( epoch, global_step + 1, mean_loss)) logger.info( "Epoch = {}, global_step = {}, loss = {:.5f}".format( epoch, global_step + 1, mean_loss)) if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: # modify learning rate with special warm up BERT uses # if args.fp16 is False, BertAdam is used that handles this automatically lr_this_step = args.learning_rate * warmup_linear.get_lr( global_step, args.warmup_proportion) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step optimizer.step() optimizer.zero_grad() global_step += 1 if (step + 1) % args.save_step == 0: if args.local_rank == -1 or args.local_rank == 0: logger.info( "** ** * Saving {} - step model ** ** * ".format( global_step)) output_model_file = os.path.join( args.output_dir, args.model_name + "_{}step".format(global_step)) model_to_save = model.module if hasattr( model, 'module') else model state = { "state_dict": model_to_save.state_dict(), "optimizer": optimizer.state_dict() } torch.save(state, output_model_file) if args.local_rank == -1 or args.local_rank == 0: logger.info( "** ** * Saving {} - epoch model ** ** * ".format(epoch)) output_model_file = os.path.join( args.output_dir, args.model_name + "_{}epoch".format(epoch + 1)) model_to_save = model.module if hasattr(model, 'module') else model state = { "state_dict": model_to_save.state_dict(), "optimizer": optimizer.state_dict() } torch.save(state, output_model_file)
def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help= "The input data dir. Should contain the .tsv files (or other data files) for the task." ) parser.add_argument( "--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, " "bert-base-multilingual-cased, bert-base-chinese.") parser.add_argument("--task_name", default=None, type=str, required=True, help="The name of the task to train.") parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model predictions and checkpoints will be written." ) parser.add_argument("--negative_weight", default=1., type=float) parser.add_argument("--neutral_words_file", default='data/identity.csv') # if true, use test data instead of val data parser.add_argument("--test", action='store_true') # Explanation specific arguments below # whether run explanation algorithms parser.add_argument("--explain", action='store_true', help='if true, explain test set predictions') parser.add_argument("--debug", action='store_true') # which algorithm to run parser.add_argument("--algo", choices=['soc']) # the output filename without postfix parser.add_argument("--output_filename", default='temp.tmp') # see utils/config.py parser.add_argument("--use_padding_variant", action='store_true') parser.add_argument("--mask_outside_nb", action='store_true') parser.add_argument("--nb_range", type=int) parser.add_argument("--sample_n", type=int) # whether use explanation regularization parser.add_argument("--reg_explanations", action='store_true') parser.add_argument("--reg_strength", type=float) parser.add_argument("--reg_mse", action='store_true') # whether discard other neutral words during regularization. default: False parser.add_argument("--discard_other_nw", action='store_false', dest='keep_other_nw') # whether remove neutral words when loading datasets parser.add_argument("--remove_nw", action='store_true') # if true, generate hierarchical explanations instead of word level outputs. # Only useful when the --explain flag is also added. parser.add_argument("--hiex", action='store_true') parser.add_argument("--hiex_tree_height", default=5, type=int) # whether add the sentence itself to the sample set in SOC parser.add_argument("--hiex_add_itself", action='store_true') # the directory where the lm is stored parser.add_argument("--lm_dir", default='runs/lm') # if configured, only generate explanations for instances with given line numbers parser.add_argument("--hiex_idxs", default=None) # if true, use absolute values of explanations for hierarchical clustering parser.add_argument("--hiex_abs", action='store_true') # if either of the two is true, only generate explanations for positive / negative instances parser.add_argument("--only_positive", action='store_true') parser.add_argument("--only_negative", action='store_true') # stop after generating x explanation parser.add_argument("--stop", default=100000000, type=int) # early stopping with decreasing learning rate. 0: direct exit when validation F1 decreases parser.add_argument("--early_stop", default=5, type=int) # other external arguments originally here in pytorch_transformers parser.add_argument( "--cache_dir", default="", type=str, help= "Where do you want to store the pre-trained models downloaded from s3") parser.add_argument( "--max_seq_length", default=128, type=int, help= "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument( "--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--eval_batch_size", default=32, type=int, help="Total batch size for eval.") parser.add_argument("--validate_steps", default=200, type=int, help="validate once for how many steps") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass." ) parser.add_argument( '--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument( '--loss_scale', type=float, default=0, help= "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.") parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.") args = parser.parse_args() combine_args(configs, args) args = configs if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() processors = { 'gab': GabProcessor, 'ws': WSProcessor, 'nyt': NytProcessor, 'MT': MTProcessor, #'multi-label': multilabel_Processor, } output_modes = { 'gab': 'classification', 'ws': 'classification', 'nyt': 'classification' } if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info( "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}". format(device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError( "Invalid gradient_accumulation_steps parameter: {}, should be >= 1" .format(args.gradient_accumulation_steps)) args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if not args.do_train and not args.do_eval: raise ValueError( "At least one of `do_train` or `do_eval` must be True.") #if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train: # raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir)) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # save configs f = open(os.path.join(args.output_dir, 'args.json'), 'w') json.dump(args.__dict__, f, indent=4) f.close() task_name = args.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) processor = processors[task_name](configs, tokenizer=tokenizer) output_mode = output_modes[task_name] label_list = processor.get_labels() num_labels = len(label_list) train_examples = None num_train_optimization_steps = None if args.do_train: train_examples = processor.get_train_examples(args.data_dir) num_train_optimization_steps = int( len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs if args.local_rank != -1: num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size( ) # Prepare model cache_dir = args.cache_dir if args.cache_dir else os.path.join( str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format( args.local_rank)) if args.do_train: model = BertForSequenceClassification.from_pretrained( args.bert_model, cache_dir=cache_dir, num_labels=num_labels) else: model = BertForSequenceClassification.from_pretrained( args.output_dir, num_labels=num_labels) model.to(device) if args.fp16: model.half() if args.local_rank != -1: try: from apex.parallel import DistributedDataParallel as DDP except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training." ) model = DDP(model) # elif n_gpu > 1: # model = torch.nn.DataParallel(model) # Prepare optimizer param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01 }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] if args.fp16: try: from apex.optimizers import FP16_Optimizer from apex.optimizers import FusedAdam except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training." ) optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.learning_rate, bias_correction=False, max_grad_norm=1.0) if args.loss_scale == 0: optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) warmup_linear = WarmupLinearSchedule( warmup=args.warmup_proportion, t_total=num_train_optimization_steps) else: if args.do_train: optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=num_train_optimization_steps) global_step = 0 nb_tr_steps = 0 tr_loss, tr_reg_loss = 0, 0 tr_reg_cnt = 0 epoch = -1 val_best_f1 = -1 val_best_loss = 1e10 early_stop_countdown = args.early_stop if args.reg_explanations: train_lm_dataloder = processor.get_dataloader('train', configs.train_batch_size) dev_lm_dataloader = processor.get_dataloader('dev', configs.train_batch_size) explainer = SamplingAndOcclusionExplain( model, configs, tokenizer, device=device, vocab=tokenizer.vocab, train_dataloader=train_lm_dataloder, dev_dataloader=dev_lm_dataloader, lm_dir=args.lm_dir, output_path=os.path.join(configs.output_dir, configs.output_filename), ) else: explainer = None if args.do_train: epoch = 0 train_features = convert_examples_to_features(train_examples, label_list, args.max_seq_length, tokenizer, output_mode, configs) logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_examples)) logger.info(" Batch size = %d", args.train_batch_size) logger.info(" Num steps = %d", num_train_optimization_steps) all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long) if output_mode == "classification": all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long) elif output_mode == "regression": all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.float) train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) if args.local_rank == -1: train_sampler = RandomSampler(train_data) else: train_sampler = DistributedSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) class_weight = torch.FloatTensor([args.negative_weight, 1]).to(device) model.train() for _ in trange(int(args.num_train_epochs), desc="Epoch"): tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 for step, batch in enumerate( tqdm(train_dataloader, desc="Iteration")): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, label_ids = batch # define a new function to compute loss values for both output_modes logits = model(input_ids, segment_ids, input_mask, labels=None) if output_mode == "classification": loss_fct = CrossEntropyLoss(class_weight) loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1)) elif output_mode == "regression": loss_fct = MSELoss() loss = loss_fct(logits.view(-1), label_ids.view(-1)) if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps tr_loss += loss.item() if args.fp16: optimizer.backward(loss) else: loss.backward() # regularize explanations # NOTE: backward performed inside this function to prevent OOM if args.reg_explanations: reg_loss, reg_cnt = explainer.compute_explanation_loss( input_ids, input_mask, segment_ids, label_ids, do_backprop=True) tr_reg_loss += reg_loss # float tr_reg_cnt += reg_cnt nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: # modify learning rate with special warm up BERT uses # if args.fp16 is False, BertAdam is used that handles this automatically lr_this_step = args.learning_rate * warmup_linear.get_lr( global_step / num_train_optimization_steps, args.warmup_proportion) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step optimizer.step() optimizer.zero_grad() global_step += 1 if global_step % args.validate_steps == 0: val_result = validate(args, model, processor, tokenizer, output_mode, label_list, device, num_labels, task_name, tr_loss, global_step, epoch, explainer) val_acc, val_f1 = val_result['acc'], val_result['f1'] if val_f1 > val_best_f1: val_best_f1 = val_f1 if args.local_rank == -1 or torch.distributed.get_rank( ) == 0: save_model(args, model, tokenizer, num_labels) else: # halve the learning rate for param_group in optimizer.param_groups: param_group['lr'] *= 0.5 early_stop_countdown -= 1 logger.info( "Reducing learning rate... Early stop countdown %d" % early_stop_countdown) if early_stop_countdown < 0: break if early_stop_countdown < 0: break epoch += 1 # training finish ############################ # if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # if not args.explain: # args.test = True # validate(args, model, processor, tokenizer, output_mode, label_list, device, num_labels, # task_name, tr_loss, global_step=0, epoch=-1, explainer=explainer) # else: # args.test = True # explain(args, model, processor, tokenizer, output_mode, label_list, device) if not args.explain: args.test = True print('--Test_args.test: %s' % str(args.test)) #Test_args.test: True validate(args, model, processor, tokenizer, output_mode, label_list, device, num_labels, task_name, tr_loss, global_step=888, epoch=-1, explainer=explainer) args.test = False else: print('--Test_args.test: %s' % str(args.test)) # Test_args.test: True args.test = True explain(args, model, processor, tokenizer, output_mode, label_list, device) args.test = False
def main(): parser = argparse.ArgumentParser() parser.add_argument( "--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, " "bert-base-multilingual-cased, bert-base-chinese.") parser.add_argument( "--output_dir", default=None, type=str, help="The output directory where the model checkpoints will be written." ) parser.add_argument("--train_file", default=None, type=str) parser.add_argument("--val_file", default=None, type=str) parser.add_argument("--test_file", default=None, type=str) parser.add_argument("--test_output", default=None, type=str) parser.add_argument("--label_vocab", default=None, type=str, required=True) parser.add_argument("--punc_set", default='PU', type=str) parser.add_argument("--has_confidence", action='store_true') parser.add_argument("--only_save_bert", action='store_true') parser.add_argument("--arc_space", default=512, type=int) parser.add_argument("--type_space", default=128, type=int) parser.add_argument("--log_file", default=None, type=str) ## Other parameters parser.add_argument( "--max_seq_length", default=128, type=int, help= "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_predict", action='store_true', help="Whether to run predict on the test set.") parser.add_argument("--do_greedy_predict", action='store_true', help="Whether to run predict on the test set.") parser.add_argument("--do_ensemble_predict", action='store_true', help="Whether to run predict on the test set.") parser.add_argument( "--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--eval_batch_size", default=8, type=int, help="Total batch size for eval.") parser.add_argument("--test_batch_size", default=8, type=int, help="Total batch size for test.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass." ) parser.add_argument( '--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument( '--loss_scale', type=float, default=0, help= "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") args = parser.parse_args() if args.log_file is None: logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) else: logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', filename=args.log_file, filemode='w', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') logger.info( "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}". format(device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError( "Invalid gradient_accumulation_steps parameter: {}, should be >= 1" .format(args.gradient_accumulation_steps)) args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if not args.do_train and not args.do_predict and not args.do_greedy_predict and not args.do_ensemble_predict: raise ValueError( "At least one of `do_train` or `do_predict` must be True.") if args.do_train: assert args.output_dir is not None if args.do_train and os.path.exists(args.output_dir) and os.listdir( args.output_dir): raise ValueError( "Output directory ({}) already exists and is not empty.".format( args.output_dir)) if args.do_train and not os.path.exists(args.output_dir): os.makedirs(args.output_dir) label_vocab, label_vocab2idx = load_label_vocab(args.label_vocab) punc_set = set( args.punc_set.split(',')) if args.punc_set is not None else None train_examples = None num_train_optimization_steps = None if args.do_train: assert args.train_file is not None train_examples = read_conll_examples( args.train_file, is_training=True, has_confidence=args.has_confidence) num_train_optimization_steps = int( len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs if args.local_rank != -1: num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size( ) if args.do_train or args.do_predict or args.do_greedy_predict: # load the pretrained model tokenizer = BertTokenizer.from_pretrained( args.bert_model, do_lower_case=args.do_lower_case) model = BertForDependencyParsing.from_pretrained( args.bert_model, cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank)), arc_space=args.arc_space, type_space=args.type_space, num_labels=len(label_vocab)) if args.fp16: model.half() model.to(device) if args.local_rank != -1: try: from apex.parallel import DistributedDataParallel as DDP except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training." ) model = DDP(model) elif n_gpu > 1: model = torch.nn.DataParallel(model) # parser = model.module if hasattr(model, 'module') else model elif args.do_ensemble_predict: bert_models = args.bert_model.split(',') assert len(bert_models) > 1 tokenizer = BertTokenizer.from_pretrained( bert_models[0], do_lower_case=args.do_lower_case) models = [] for bm in bert_models: model = BertForDependencyParsing.from_pretrained( bm, cache_dir=os.path.join( str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank)), arc_space=args.arc_space, type_space=args.type_space, num_labels=len(label_vocab)) model.to(device) model.eval() models.append(model) parser = models[0].module if hasattr(models[0], 'module') else models[0] # Prepare optimizer if args.do_train: param_optimizer = list(model.named_parameters()) # hack to remove pooler, which is not used # thus it produce None grad that break apex # !!! NOTE why? param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]] no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [ p for n, p in param_optimizer if not any(nd in n for nd in no_decay) ], 'weight_decay': 0.01 }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] if args.fp16: try: from apex.optimizers import FP16_Optimizer from apex.optimizers import FusedAdam except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training." ) optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.learning_rate, bias_correction=False, max_grad_norm=1.0) if args.loss_scale == 0: optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) warmup_linear = WarmupLinearSchedule( warmup=args.warmup_proportion, t_total=num_train_optimization_steps) else: optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=num_train_optimization_steps) # start training loop if args.do_train: global_step = 0 train_features = convert_examples_to_features( train_examples, tokenizer, args.max_seq_length, label_vocab2idx, True, has_confidence=args.has_confidence) logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_examples)) logger.info(" Batch size = %d", args.train_batch_size) logger.info(" Num steps = %d", num_train_optimization_steps) all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.float32) all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long) all_lengths = torch.tensor([f.seq_len for f in train_features], dtype=torch.long) all_heads = torch.tensor([f.heads for f in train_features], dtype=torch.long) all_labels = torch.tensor([f.labels for f in train_features], dtype=torch.long) if args.has_confidence: all_confidence = torch.tensor( [f.confidence for f in train_features], dtype=torch.float32) train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_lengths, all_heads, all_labels, all_confidence) else: train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_lengths, all_heads, all_labels) if args.local_rank == -1: train_sampler = RandomSampler(train_data) else: train_sampler = DistributedSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) if args.do_eval: assert args.val_file is not None eval_examples = read_conll_examples(args.val_file, is_training=False, has_confidence=False) eval_features = convert_examples_to_features(eval_examples, tokenizer, args.max_seq_length, label_vocab2idx, False, has_confidence=False) logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", args.eval_batch_size) all_example_ids = torch.tensor( [f.example_id for f in eval_features], dtype=torch.long) all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor( [f.input_mask for f in eval_features], dtype=torch.float32) all_segment_ids = torch.tensor( [f.segment_ids for f in eval_features], dtype=torch.long) all_lengths = torch.tensor([f.seq_len for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_lengths, all_example_ids) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) best_uas = 0 best_las = 0 for epoch in trange(int(args.num_train_epochs), desc="Epoch"): logger.info("Training epoch: {}".format(epoch)) tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 model.train() for step, batch in enumerate( tqdm(train_dataloader, desc="Iteration")): batch = tuple(t.to(device) for t in batch) if args.has_confidence: input_ids, input_mask, segment_ids, lengths, heads, label_ids, confidence = batch else: confidence = None input_ids, input_mask, segment_ids, lengths, heads, label_ids = batch loss = model(input_ids, segment_ids, input_mask, heads, label_ids, confidence) if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.fp16 and args.loss_scale != 1.0: # rescale loss for fp16 training # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html loss = loss * args.loss_scale if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps tr_loss += loss.item() nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 if args.fp16: optimizer.backward(loss) else: loss.backward() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: # modify learning rate with special warm up BERT uses # if args.fp16 is False, BertAdam is used that handles this automatically lr_this_step = args.learning_rate * warmup_linear.get_lr( global_step, args.warmup_proportion) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step optimizer.step() optimizer.zero_grad() global_step += 1 if global_step % 100 == 0: logger.info("Training loss: {}, global step: {}".format( tr_loss / nb_tr_steps, global_step)) # we eval every epoch if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): logger.info("***** Running evaluation *****") model.eval() eval_predict_words, eval_predict_postags, eval_predict_heads, eval_predict_labels = [],[],[],[] for input_ids, input_mask, segment_ids, lengths, example_ids in tqdm( eval_dataloader, desc="Evaluating"): example_ids = example_ids.numpy() batch_words = [ eval_features[eid].example.sentence for eid in example_ids ] batch_postags = [ eval_features[eid].example.postags for eid in example_ids ] batch_word_index = [ eval_features[eid].word_index for eid in example_ids ] # token -> word batch_token_starts = [ eval_features[eid].token_starts for eid in example_ids ] # word -> token start batch_heads = [ eval_features[eid].example.heads for eid in example_ids ] input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) heads = heads.to(device) label_ids = label_ids.to(device) with torch.no_grad(): # tmp_eval_loss = model(input_ids, segment_ids, input_mask, heads, label_ids) energy = model(input_ids, segment_ids, input_mask) heads_pred, labels_pred = parser.decode_MST( energy.cpu().numpy(), lengths.numpy(), leading_symbolic=0, labeled=True) # we convert the subword dependency parsing to word dependency parsing just the word and token start map pred_heads = [] pred_labels = [] for i in range(len(batch_word_index)): word_index = batch_word_index[i] token_starts = batch_token_starts[i] hpd = [] lpd = [] for j in range(len(token_starts)): if j == 0: #[CLS] continue elif j == len(token_starts) - 1: # [SEP] continue else: hpd.append( word_index[heads_pred[i, token_starts[j]]]) lpd.append( label_vocab[labels_pred[i, token_starts[j]]]) pred_heads.append(hpd) pred_labels.append(lpd) eval_predict_words += batch_words eval_predict_postags += batch_postags eval_predict_heads += pred_heads eval_predict_labels += pred_labels eval_output_file = os.path.join(args.output_dir, 'eval.pred') write_conll_examples(eval_predict_words, eval_predict_postags, eval_predict_heads, eval_predict_labels, eval_output_file) eval_f = os.popen( "python scripts/eval_nlpcc_dp.py " + args.val_file + " " + eval_output_file, "r") result_text = eval_f.read().strip() logger.info("***** Eval results *****") logger.info(result_text) eval_f.close() eval_res = re.findall( r'UAS = \d+/\d+ = ([\d\.]+), LAS = \d+/\d+ = ([\d\.]+)', result_text) assert len(eval_res) > 0 eval_res = eval_res[0] eval_uas = float(eval_res[0]) eval_las = float(eval_res[1]) # save model if best_las < eval_las or (eval_las == best_las and best_uas < eval_uas): best_uas = eval_uas best_las = eval_las logger.info( "new best uas %.2f%% las %.2f%%, saving models.", best_uas, best_las) # Save a trained model, configuration and tokenizer model_to_save = model.module if hasattr( model, 'module') else model # Only save the model it-self # If we save using the predefined names, we can load using `from_pretrained` output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME) output_config_file = os.path.join(args.output_dir, CONFIG_NAME) model_dict = model_to_save.state_dict() if args.only_save_bert: model_dict = { k: v for k, v in model_dict.items() if 'bert.' in k } torch.save(model_dict, output_model_file) model_to_save.config.to_json_file(output_config_file) tokenizer.save_vocabulary(args.output_dir) # start predict if args.do_predict: model.eval() assert args.test_file is not None test_examples = read_conll_examples(args.test_file, is_training=False, has_confidence=False) test_features = convert_examples_to_features(test_examples, tokenizer, args.max_seq_length, label_vocab2idx, False, has_confidence=False) logger.info("***** Running prediction *****") logger.info(" Num examples = %d", len(test_examples)) logger.info(" Batch size = %d", args.test_batch_size) all_example_ids = torch.tensor([f.example_id for f in test_features], dtype=torch.long) all_input_ids = torch.tensor([f.input_ids for f in test_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in test_features], dtype=torch.float32) all_segment_ids = torch.tensor([f.segment_ids for f in test_features], dtype=torch.long) all_lengths = torch.tensor([f.seq_len for f in test_features], dtype=torch.long) test_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_lengths, all_example_ids) # Run prediction for full data test_sampler = SequentialSampler(test_data) test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args.test_batch_size) test_predict_words, test_predict_postags, test_predict_heads, test_predict_labels = [],[],[],[] for batch_id, batch in enumerate( tqdm(test_dataloader, desc="Predicting")): input_ids, input_mask, segment_ids, lengths, example_ids = batch example_ids = example_ids.numpy() batch_words = [ test_features[eid].example.sentence for eid in example_ids ] batch_postags = [ test_features[eid].example.postags for eid in example_ids ] batch_word_index = [ test_features[eid].word_index for eid in example_ids ] # token -> word batch_token_starts = [ test_features[eid].token_starts for eid in example_ids ] # word -> token start input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) lengths = lengths.numpy() with torch.no_grad(): energy = model(input_ids, segment_ids, input_mask) heads_pred, labels_pred = parser.decode_MST(energy.cpu().numpy(), lengths, leading_symbolic=0, labeled=True) pred_heads = [] pred_labels = [] for i in range(len(batch_word_index)): word_index = batch_word_index[i] token_starts = batch_token_starts[i] hpd = [] lpd = [] for j in range(len(token_starts)): if j == 0: #[CLS] continue elif j == len(token_starts) - 1: # [SEP] continue else: hpd.append(word_index[heads_pred[i, token_starts[j]]]) lpd.append(label_vocab[labels_pred[i, token_starts[j]]]) pred_heads.append(hpd) pred_labels.append(lpd) test_predict_words += batch_words test_predict_postags += batch_postags test_predict_heads += pred_heads test_predict_labels += pred_labels assert args.test_output is not None write_conll_examples(test_predict_words, test_predict_postags, test_predict_heads, test_predict_labels, args.test_output) if args.do_greedy_predict: model.eval() assert args.test_file is not None test_examples = read_conll_examples(args.test_file, is_training=False, has_confidence=False) test_features = convert_examples_to_features(test_examples, tokenizer, args.max_seq_length, label_vocab2idx, False, has_confidence=False) logger.info("***** Running prediction *****") logger.info(" Num examples = %d", len(test_examples)) logger.info(" Batch size = %d", args.test_batch_size) all_example_ids = torch.tensor([f.example_id for f in test_features], dtype=torch.long) all_input_ids = torch.tensor([f.input_ids for f in test_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in test_features], dtype=torch.float32) all_segment_ids = torch.tensor([f.segment_ids for f in test_features], dtype=torch.long) all_lengths = torch.tensor([f.seq_len for f in test_features], dtype=torch.long) test_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_lengths, all_example_ids) # Run prediction for full data test_sampler = SequentialSampler(test_data) test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args.test_batch_size) test_predict_words, test_predict_postags, test_predict_heads, test_predict_labels = [],[],[],[] for batch_id, batch in enumerate( tqdm(test_dataloader, desc="Predicting")): input_ids, input_mask, segment_ids, lengths, example_ids = batch example_ids = example_ids.numpy() batch_words = [ test_features[eid].example.sentence for eid in example_ids ] batch_postags = [ test_features[eid].example.postags for eid in example_ids ] batch_word_index = [ test_features[eid].word_index for eid in example_ids ] # token -> word batch_token_starts = [ test_features[eid].token_starts for eid in example_ids ] # word -> token start input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) lengths = lengths.numpy() with torch.no_grad(): heads_pred, labels_pred = model(input_ids, segment_ids, input_mask, greedy_inference=True) pred_heads = [] pred_labels = [] for i in range(len(batch_word_index)): word_index = batch_word_index[i] token_starts = batch_token_starts[i] hpd = [] lpd = [] for j in range(len(token_starts)): if j == 0: #[CLS] continue elif j == len(token_starts) - 1: # [SEP] continue else: hpd.append(word_index[heads_pred[i, token_starts[j]]]) lpd.append(label_vocab[labels_pred[i, token_starts[j]]]) pred_heads.append(hpd) pred_labels.append(lpd) test_predict_words += batch_words test_predict_postags += batch_postags test_predict_heads += pred_heads test_predict_labels += pred_labels assert args.test_output is not None write_conll_examples(test_predict_words, test_predict_postags, test_predict_heads, test_predict_labels, args.test_output) if args.do_ensemble_predict: assert args.test_file is not None test_examples = read_conll_examples(args.test_file, is_training=False, has_confidence=False) test_features = convert_examples_to_features(test_examples, tokenizer, args.max_seq_length, label_vocab2idx, False, has_confidence=False) logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(test_examples)) logger.info(" Batch size = %d", args.test_batch_size) all_example_ids = torch.tensor([f.example_id for f in test_features], dtype=torch.long) all_input_ids = torch.tensor([f.input_ids for f in test_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in test_features], dtype=torch.float32) all_segment_ids = torch.tensor([f.segment_ids for f in test_features], dtype=torch.long) all_lengths = torch.tensor([f.seq_len for f in test_features], dtype=torch.long) test_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_lengths, all_example_ids) # Run prediction for full data test_sampler = SequentialSampler(test_data) test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args.test_batch_size) test_predict_words, test_predict_postags, test_predict_heads, test_predict_labels = [],[],[],[] for batch_id, batch in enumerate( tqdm(test_dataloader, desc="Predicting")): input_ids, input_mask, segment_ids, lengths, example_ids = batch example_ids = example_ids.numpy() batch_words = [ test_features[eid].example.sentence for eid in example_ids ] batch_postags = [ test_features[eid].example.postags for eid in example_ids ] batch_word_index = [ test_features[eid].word_index for eid in example_ids ] # token -> word batch_token_starts = [ test_features[eid].token_starts for eid in example_ids ] # word -> token start input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) lengths = lengths.numpy() with torch.no_grad(): energy_sum = None for model in models: energy = model(input_ids, segment_ids, input_mask) if energy_sum is None: energy_sum = energy else: energy_sum = energy_sum + energy energy_sum = energy_sum / len(models) heads_pred, labels_pred = parser.decode_MST( energy_sum.cpu().numpy(), lengths, leading_symbolic=0, labeled=True) pred_heads = [] pred_labels = [] for i in range(len(batch_word_index)): word_index = batch_word_index[i] token_starts = batch_token_starts[i] hpd = [] lpd = [] for j in range(len(token_starts)): if j == 0: #[CLS] continue elif j == len(token_starts) - 1: # [SEP] continue else: hpd.append(word_index[heads_pred[i, token_starts[j]]]) lpd.append(label_vocab[labels_pred[i, token_starts[j]]]) pred_heads.append(hpd) pred_labels.append(lpd) test_predict_words += batch_words test_predict_postags += batch_postags test_predict_heads += pred_heads test_predict_labels += pred_labels assert args.test_output is not None write_conll_examples(test_predict_words, test_predict_postags, test_predict_heads, test_predict_labels, args.test_output)