def _resource_apply_op(self, grad, var, indices=None): # 更新判据 cond = K.equal(self.iterations % self.grad_accum_steps, 0) # 获取梯度 ag = self.get_slot(var, 'ag') old_update = K.update def new_update(x, new_x): new_x = K.switch(cond, new_x, x) return old_update(x, new_x) K.update = new_update ag_t = ag / self.grad_accum_steps op = super(new_optimizer, self)._resource_apply_op(ag_t, var) K.update = old_update # 累积梯度 with tf.control_dependencies([op]): ag_t = K.switch(cond, K.zeros_like(ag), ag) with tf.control_dependencies([K.update(ag, ag_t)]): if indices is None: ag_t = K.update(ag, ag + grad) else: ag_t = self._resource_scatter_add(ag, indices, grad) return ag_t
def get_updates(self, loss, params): # 更新判据 cond = K.equal(self.iterations % self.grad_accum_steps, 0) # 获取梯度 grads = self.get_gradients(loss, params) self.accum_grads = [ K.zeros(K.int_shape(p), dtype=K.dtype(p), name='accum_grad_%s' % i) for i, p in enumerate(params) ] old_update = K.update def new_update(x, new_x): new_x = K.switch(cond, new_x, x) return old_update(x, new_x) K.update = new_update updates = super(new_optimizer, self).get_updates(loss, params) K.update = old_update # 累积梯度 with tf.control_dependencies(updates): accum_updates = [ K.update(ag, K.switch(cond, g, ag + g)) for g, ag in zip(grads, self.accum_grads) ] return accum_updates
def _resource_apply_op(self, grad, var, indices=None): op = super(new_optimizer, self)._resource_apply_op(grad, var, indices) k, alpha = self.steps_per_slow_update, self.slow_step_size cond = K.equal(self.iterations % k, 0) slow_var = self.get_slot(var, 'slow_var') slow_var_t = slow_var + alpha * (var - slow_var) with tf.control_dependencies([op]): slow_update = K.update(slow_var, K.switch(cond, slow_var_t, slow_var)) with tf.control_dependencies([slow_update]): copy_update = K.update(var, K.switch(cond, slow_var, var)) return copy_update
def sparse_accuracy(self, y_true, y_pred): """训练过程中显示逐帧准确率的函数,排除了mask的影响 此处y_true需要是整数形式(非one hot) """ # 导出mask并转换数据类型 if self.input_mask is None: mask = None else: mask = K.cast(self.input_mask, K.floatx()) # y_true需要重新明确一下shape和dtype y_true = K.reshape(y_true, K.shape(y_pred)[:-1]) y_true = K.cast(y_true, 'int32') # 逐标签取最大来粗略评测训练效果 y_pred = K.cast(K.argmax(y_pred, 2), 'int32') isequal = K.cast(K.equal(y_true, y_pred), K.floatx()) if mask is None: return K.mean(isequal) else: return K.sum(isequal * mask) / K.sum(mask)
def get_updates(self, loss, params): updates = super(new_optimizer, self).get_updates(loss, params) k, alpha = self.steps_per_slow_update, self.slow_step_size cond = K.equal(self.iterations % k, 0) slow_vars = [ K.zeros(K.int_shape(p), dtype=K.dtype(p), name='slow_var_%s' % i) for i, p in enumerate(params) ] with tf.control_dependencies(updates): slow_updates = [ K.update(q, K.switch(cond, q + alpha * (p - q), q)) for p, q in zip(params, slow_vars) ] with tf.control_dependencies(slow_updates): copy_updates = [ K.update(p, K.switch(cond, q, p)) for p, q in zip(params, slow_vars) ] return copy_updates
def basic_accuracy(self, y_true, y_pred, go_backwards=False): """训练过程中显示逐帧准确率的函数,排除了mask的影响 此处y_true需要是整数形式(非one hot) """ # 导出mask并转换数据类型 if self.input_mask is None: mask = None else: mask = K.cast(self.input_mask, K.floatx()) # y_true需要重新明确一下shape和dtype y_true = K.reshape(y_true, K.shape(y_pred)[:-1]) y_true = K.cast(y_true, 'int32') # 反转相关 if self.hidden_dim is None: if go_backwards: # 是否反转序列 y_true, y_pred = self.reverse_sequence([y_true, y_pred], mask) trans = K.transpose(self.trans) else: trans = self.trans histoty = K.gather(trans, y_true) else: if go_backwards: # 是否反转序列 y_true, y_pred = self.reverse_sequence([y_true, y_pred], mask) r_trans, l_trans = self.l_trans, self.r_trans else: l_trans, r_trans = self.l_trans, self.r_trans histoty = K.gather(l_trans, y_true) histoty = tf.einsum('bnd,kd->bnk', histoty, r_trans) # 计算逐标签accuracy histoty = K.concatenate([y_pred[:, :1], histoty[:, :-1]], 1) y_pred = (y_pred + histoty) / 2 y_pred = K.cast(K.argmax(y_pred, 2), 'int32') isequal = K.cast(K.equal(y_true, y_pred), K.floatx()) if mask is None: return K.mean(isequal) else: return K.sum(isequal * mask) / K.sum(mask)