Exemplo n.º 1
0
        def _resource_apply_op(self, grad, var, indices=None):
            # 更新判据
            cond = K.equal(self.iterations % self.grad_accum_steps, 0)
            # 获取梯度
            ag = self.get_slot(var, 'ag')

            old_update = K.update

            def new_update(x, new_x):
                new_x = K.switch(cond, new_x, x)
                return old_update(x, new_x)

            K.update = new_update
            ag_t = ag / self.grad_accum_steps
            op = super(new_optimizer, self)._resource_apply_op(ag_t, var)
            K.update = old_update

            # 累积梯度
            with tf.control_dependencies([op]):
                ag_t = K.switch(cond, K.zeros_like(ag), ag)
                with tf.control_dependencies([K.update(ag, ag_t)]):
                    if indices is None:
                        ag_t = K.update(ag, ag + grad)
                    else:
                        ag_t = self._resource_scatter_add(ag, indices, grad)

            return ag_t
Exemplo n.º 2
0
        def get_updates(self, loss, params):
            # 更新判据
            cond = K.equal(self.iterations % self.grad_accum_steps, 0)
            # 获取梯度
            grads = self.get_gradients(loss, params)
            self.accum_grads = [
                K.zeros(K.int_shape(p),
                        dtype=K.dtype(p),
                        name='accum_grad_%s' % i) for i, p in enumerate(params)
            ]

            old_update = K.update

            def new_update(x, new_x):
                new_x = K.switch(cond, new_x, x)
                return old_update(x, new_x)

            K.update = new_update
            updates = super(new_optimizer, self).get_updates(loss, params)
            K.update = old_update

            # 累积梯度
            with tf.control_dependencies(updates):
                accum_updates = [
                    K.update(ag, K.switch(cond, g, ag + g))
                    for g, ag in zip(grads, self.accum_grads)
                ]

            return accum_updates
Exemplo n.º 3
0
        def _resource_apply_op(self, grad, var, indices=None):
            op = super(new_optimizer,
                       self)._resource_apply_op(grad, var, indices)

            k, alpha = self.steps_per_slow_update, self.slow_step_size
            cond = K.equal(self.iterations % k, 0)
            slow_var = self.get_slot(var, 'slow_var')
            slow_var_t = slow_var + alpha * (var - slow_var)

            with tf.control_dependencies([op]):
                slow_update = K.update(slow_var,
                                       K.switch(cond, slow_var_t, slow_var))
                with tf.control_dependencies([slow_update]):
                    copy_update = K.update(var, K.switch(cond, slow_var, var))

            return copy_update
Exemplo n.º 4
0
 def sparse_accuracy(self, y_true, y_pred):
     """训练过程中显示逐帧准确率的函数,排除了mask的影响
     此处y_true需要是整数形式(非one hot)
     """
     # 导出mask并转换数据类型
     if self.input_mask is None:
         mask = None
     else:
         mask = K.cast(self.input_mask, K.floatx())
     # y_true需要重新明确一下shape和dtype
     y_true = K.reshape(y_true, K.shape(y_pred)[:-1])
     y_true = K.cast(y_true, 'int32')
     # 逐标签取最大来粗略评测训练效果
     y_pred = K.cast(K.argmax(y_pred, 2), 'int32')
     isequal = K.cast(K.equal(y_true, y_pred), K.floatx())
     if mask is None:
         return K.mean(isequal)
     else:
         return K.sum(isequal * mask) / K.sum(mask)
Exemplo n.º 5
0
        def get_updates(self, loss, params):
            updates = super(new_optimizer, self).get_updates(loss, params)

            k, alpha = self.steps_per_slow_update, self.slow_step_size
            cond = K.equal(self.iterations % k, 0)
            slow_vars = [
                K.zeros(K.int_shape(p),
                        dtype=K.dtype(p),
                        name='slow_var_%s' % i) for i, p in enumerate(params)
            ]

            with tf.control_dependencies(updates):
                slow_updates = [
                    K.update(q, K.switch(cond, q + alpha * (p - q), q))
                    for p, q in zip(params, slow_vars)
                ]
                with tf.control_dependencies(slow_updates):
                    copy_updates = [
                        K.update(p, K.switch(cond, q, p))
                        for p, q in zip(params, slow_vars)
                    ]

            return copy_updates
Exemplo n.º 6
0
 def basic_accuracy(self, y_true, y_pred, go_backwards=False):
     """训练过程中显示逐帧准确率的函数,排除了mask的影响
     此处y_true需要是整数形式(非one hot)
     """
     # 导出mask并转换数据类型
     if self.input_mask is None:
         mask = None
     else:
         mask = K.cast(self.input_mask, K.floatx())
     # y_true需要重新明确一下shape和dtype
     y_true = K.reshape(y_true, K.shape(y_pred)[:-1])
     y_true = K.cast(y_true, 'int32')
     # 反转相关
     if self.hidden_dim is None:
         if go_backwards:  # 是否反转序列
             y_true, y_pred = self.reverse_sequence([y_true, y_pred], mask)
             trans = K.transpose(self.trans)
         else:
             trans = self.trans
         histoty = K.gather(trans, y_true)
     else:
         if go_backwards:  # 是否反转序列
             y_true, y_pred = self.reverse_sequence([y_true, y_pred], mask)
             r_trans, l_trans = self.l_trans, self.r_trans
         else:
             l_trans, r_trans = self.l_trans, self.r_trans
         histoty = K.gather(l_trans, y_true)
         histoty = tf.einsum('bnd,kd->bnk', histoty, r_trans)
     # 计算逐标签accuracy
     histoty = K.concatenate([y_pred[:, :1], histoty[:, :-1]], 1)
     y_pred = (y_pred + histoty) / 2
     y_pred = K.cast(K.argmax(y_pred, 2), 'int32')
     isequal = K.cast(K.equal(y_true, y_pred), K.floatx())
     if mask is None:
         return K.mean(isequal)
     else:
         return K.sum(isequal * mask) / K.sum(mask)