Example #1
0
    def run(self):
        """Run the simulation:
        if beginning from a blank state, then will use h.run(),
        if continuing from the saved state, then will use h.continuerun() 
        """
        for mod in self._sim_mods:
            if isinstance(mod, mods.ClampReport):
                if mod.variable == "se":
                    mod.initialize(self, self._seclamps)
                elif mod.variable == "ic":
                    mod.initialize(self, self._iclamps)
                elif mod.variable == "f_ic":
                    mod.initialize(self, self._f_iclamps)
            else:
                mod.initialize(self)

        self.start_time = h.startsw()
        s_time = time.time()
        pc.timeout(0)
         
        pc.barrier()  # wait for all hosts to get to this point
        io.log_info('Running simulation for {:.3f} ms with the time step {:.3f} ms'.format(self.tstop, self.dt))
        io.log_info('Starting timestep: {} at t_sim: {:.3f} ms'.format(self.tstep, h.t))
        io.log_info('Block save every {} steps'.format(self.nsteps_block))

        if self._start_from_state:
            h.continuerun(h.tstop)
        else:
            h.run(h.tstop)        # <- runs simuation: works in parallel
                    
        pc.barrier()

        for mod in self._sim_mods:
            mod.finalize(self)
        pc.barrier()

        end_time = time.time()

        sim_time = self.__elapsed_time(end_time - s_time)
        io.log_info('Simulation completed in {} '.format(sim_time))
Example #2
0
    def from_config(cls, config, network, set_recordings=True):
        # TODO: convert from json to sonata config if necessary

        sim = cls(network=network,
                  dt=config.dt,
                  tstop=config.tstop,
                  v_init=config.v_init,
                  celsius=config.celsius,
                  cao0=config.cao0,
                  optocell=config.optocell,
                  nsteps_block=config.block_step)

        network.io.log_info('Building cells.')
        network.build_nodes()

        network.io.log_info('Building recurrent connections')
        network.build_recurrent_edges()

        # TODO: Need to create a gid selector
        for sim_input in inputs.from_config(config):
            node_set = network.get_node_set(sim_input.node_set)
            if sim_input.input_type == 'spikes':
                spikes = spike_trains.SpikesInput.load(
                    name=sim_input.name,
                    module=sim_input.module,
                    input_type=sim_input.input_type,
                    params=sim_input.params)
                io.log_info('Build virtual cell stimulations for {}'.format(
                    sim_input.name))
                network.add_spike_trains(spikes, node_set)

            elif sim_input.module == 'IClamp':
                # TODO: Parse from csv file
                amplitude = sim_input.params['amp']
                delay = sim_input.params['delay']
                duration = sim_input.params['duration']
                gids = sim_input.params['node_set']
                sim.attach_current_clamp(amplitude, delay, duration, node_set)

            elif sim_input.module == 'xstim':
                sim.add_mod(mods.XStimMod(**sim_input.params))

            else:
                io.log_exception('Can not parse input format {}'.format(
                    sim_input.name))

        if config.calc_ecp:
            for gid, cell in network.cell_type_maps('biophysical').items():
                cell.setup_ecp()
            sim.h.cvode.use_fast_imem(1)

        # Parse the "reports" section of the config and load an associated output module for each report
        sim_reports = reports.from_config(config)
        for report in sim_reports:
            if isinstance(report, reports.SpikesReport):
                mod = mods.SpikesMod(**report.params)

            elif isinstance(report, reports.SectionReport):
                mod = mods.SectionReport(**report.params)

            elif isinstance(report, reports.MembraneReport):
                if report.params['sections'] == 'soma':
                    mod = mods.SomaReport(**report.params)

                else:
                    mod = mods.MembraneReport(**report.params)

            elif isinstance(report, reports.ECPReport):
                assert config.calc_ecp
                mod = mods.EcpMod(**report.params)
                # Set up the ability for ecp on all relevant cells
                # TODO: According to spec we need to allow a different subset other than only biophysical cells
                # for gid, cell in network.cell_type_maps('biophysical').items():
                #     cell.setup_ecp()

            elif report.module == 'save_synapses':
                mod = mods.SaveSynapses(**report.params)

            else:
                # TODO: Allow users to register customized modules using pymodules
                io.log_warning('Unrecognized module {}, skipping.'.format(
                    report.module))
                continue

            sim.add_mod(mod)

        return sim
Example #3
0
    def from_config(cls, config, network, set_recordings=True):
        # TODO: convert from json to sonata config if necessary

        #The network must be built before initializing the simulator because
        #gap junctions must be set up before the simulation is initialized.
        network.io.log_info('Building cells.')
        network.build_nodes()

        network.io.log_info('Building recurrent connections')
        network.build_recurrent_edges()

        sim = cls(network=network,
                  dt=config.dt,
                  tstop=config.tstop,
                  v_init=config.v_init,
                  celsius=config.celsius,
                  nsteps_block=config.block_step)

        # TODO: Need to create a gid selector
        for sim_input in inputs.from_config(config):
            try:
                network.get_node_set(sim_input.node_set)
            except:
                print(
                    "Parameter node_set must be given in inputs module of simulation_config file. If unsure of what node_set should be, set it to 'all'."
                )
            node_set = network.get_node_set(sim_input.node_set)
            if sim_input.input_type == 'spikes':
                io.log_info('Building virtual cell stimulations for {}'.format(
                    sim_input.name))
                path = sim_input.params['input_file']
                spikes = SpikeTrains.load(path=path,
                                          file_type=sim_input.module,
                                          **sim_input.params)
                network.add_spike_trains(spikes, node_set)

            elif sim_input.module == "FileIClamp":
                sim.attach_file_current_clamp(sim_input.params["input_file"])

            elif sim_input.module == 'IClamp':
                # TODO: Parse from csv file
                try:
                    len(sim_input.params['amp'])
                except:
                    sim_input.params['amp'] = [float(sim_input.params['amp'])]
                if len(sim_input.params['amp']) > 1:
                    sim_input.params['amp'] = [
                        float(i) for i in sim_input.params['amp']
                    ]

                try:
                    len(sim_input.params['delay'])
                except:
                    sim_input.params['delay'] = [
                        float(sim_input.params['delay'])
                    ]
                if len(sim_input.params['delay']) > 1:
                    sim_input.params['delay'] = [
                        float(i) for i in sim_input.params['delay']
                    ]

                try:
                    len(sim_input.params['duration'])
                except:
                    sim_input.params['duration'] = [
                        float(sim_input.params['duration'])
                    ]
                if len(sim_input.params['duration']) > 1:
                    sim_input.params['duration'] = [
                        float(i) for i in sim_input.params['duration']
                    ]

                amplitude = sim_input.params['amp']
                delay = sim_input.params['delay']
                duration = sim_input.params['duration']

                try:
                    sim_input.params['gids']
                except:
                    sim_input.params['gids'] = None
                if sim_input.params['gids'] is not None:
                    gids = sim_input.params['gids']
                else:
                    gids = list(node_set.gids())

                sim.attach_current_clamp(amplitude, delay, duration, gids)

            elif sim_input.module == "SEClamp":
                try:
                    len(sim_input.params['amps'])
                except:
                    sim_input.params['amps'] = [
                        float(sim_input.params['amps'])
                    ]

                try:
                    len(sim_input.params['durations'])
                except:
                    sim_input.params['durations'] = [
                        float(sim_input.params['durations'])
                    ]

                amplitudes = sim_input.params['amps']
                durations = sim_input.params['durations']
                rs = None

                if "rs" in sim_input.params.keys():
                    try:
                        len(sim_input.params['rs'])
                    except:
                        sim_input.params['rs'] = [
                            float(sim_input.params['rs'])
                        ]
                    if len(sim_input.params['rs']) > 1:
                        sim_input.params['rs'] = [
                            float(i) for i in sim_input.params['rs']
                        ]
                    rs = sim_input.params["rs"]

                try:
                    sim_input.params['gids']
                except:
                    sim_input.params['gids'] = None
                if sim_input.params['gids'] is not None:
                    gids = sim_input.params['gids']
                else:
                    gids = list(node_set.gids())

                sim.attach_se_voltage_clamp(amplitudes, durations, gids, rs)

            elif sim_input.module == 'xstim':
                sim.add_mod(mods.XStimMod(**sim_input.params))

            else:
                io.log_exception('Can not parse input format {}'.format(
                    sim_input.name))

        # Parse the "reports" section of the config and load an associated output module for each report
        sim_reports = reports.from_config(config)
        for report in sim_reports:
            if isinstance(report, reports.SpikesReport):
                mod = mods.SpikesMod(**report.params)

            elif report.module == 'netcon_report':
                mod = mods.NetconReport(**report.params)

            elif isinstance(report, reports.MembraneReport):
                if report.params['sections'] == 'soma':
                    mod = mods.SomaReport(**report.params)

                else:
                    mod = mods.MembraneReport(**report.params)
            elif isinstance(report, reports.ClampReport):
                mod = mods.ClampReport(**report.params)

            elif isinstance(report, reports.ECPReport):
                mod = mods.EcpMod(**report.params)
                # Set up the ability for ecp on all relevant cells
                # TODO: According to spec we need to allow a different subset other than only biophysical cells
                for gid, cell in network.cell_type_maps('biophysical').items():
                    cell.setup_ecp()

            elif report.module == 'save_synapses':
                mod = mods.SaveSynapses(**report.params)

            else:
                # TODO: Allow users to register customized modules using pymodules
                io.log_warning('Unrecognized module {}, skipping.'.format(
                    report.module))
                continue

            sim.add_mod(mod)

        return sim
Example #4
0
    def _activate_hln(self, sim, block_interval, firing_rate):
        block_length = sim.nsteps_block * sim.dt / 1000.0
        next_block_tstart = (block_interval[1] +
                             1) * sim.dt / 1000.0  # The next time-step
        next_block_tstop = next_block_tstart + block_length  # The time-step when the next block ends

        # This is where you can use the firing-rate of the low-level neurons to generate a set of spike times for the
        # next block
        if firing_rate > 0.0:
            psg = PoissonSpikeGenerator()
            # # Use homogeneous input
            # psg.add(node_ids=[0], firing_rate=firing_rate, times=(next_block_tstart, next_block_tstop)) # sec
            # spikes = psg.get_times([0])*1000 # convert sec to ms
            # n_spikes = len(spikes)
            # io.log_info('     _activate_hln firing rate: {:.2f} Hz'.format(n_spikes/block_length))
            # if n_spikes > 0:
            # # Update firing rate of bladder afferent neurons
            # for gid in self._high_level_neurons:
            # self._spike_events[gid] = np.concatenate((self._spike_events[gid],spikes))
            # nc = self._netcons[gid]
            # for t in spikes:
            # nc.event(t)
            # io.log_info('Last spike: {:.1f} ms'.format(spikes[-1]))
            # Use inhomogeneous input
            n = len(self._high_level_neurons)
            psg.add(node_ids=self._high_level_neurons,
                    firing_rate=firing_rate,
                    times=(next_block_tstart, next_block_tstop))
            n_spikes = np.zeros(n)
            last_spike = 0.0
            for i, gid in enumerate(self._high_level_neurons):
                spikes = psg.get_times(gid) * 1000
                n_spikes[i] = len(spikes)
                if n_spikes[i] > 0:
                    self._spike_events[gid] = np.concatenate(
                        (self._spike_events[gid], spikes))
                    nc = self._netcons[gid]
                    for t in spikes:
                        nc.event(t)
                    last_spike = max(last_spike, spikes[-1])
            io.log_info(
                '     _activate_hln firing rate: ' +
                ','.join(["%.2f" % (ns / block_length)
                          for ns in n_spikes]) + ' Hz')
            if last_spike > 0:
                io.log_info('Last spike: {:.1f} ms'.format(last_spike))
        else:
            io.log_info('     _activate_hln firing rate: 0')

        # If pressure is maxxed, update firing rate of EUS motor neurons
        # Guarding reflex
        # press_change = self._prev_glob_press - self._glob_press
        # if self._glob_press > press_thres or press_change > change_thres:
        # psg = PoissonSpikeGenerator()
        # eus_fr = self._glob_press*10 + press_change*10 # Assumption: guarding reflex
        # # depends on current pressure
        # # and change from last pressure
        # psg.add(node_ids=[0], firing_rate=eus_fr, times=(next_block_tstart, next_block_tstop))
        # self._spike_events = psg.get_times(0)
        # for gid in self._eus_neurons:
        # nc = self._netcons[gid]
        # for t in self._spike_events:
        # nc.event(t)
################ Activate higher order based on pressure threshold ##############################

# if block_interval[1] % 2000 == 1000:  # For fast testing, only add events to every other block
# if False:  # For testing
# if self._glob_press > self.press_thres:
#     io.log_info('      updating pag input')
#     psg = PoissonSpikeGenerator()
#     print(self.press_thres)
#
#     pag_fr = self.press_thres #change
#     psg.add(node_ids=[0], firing_rate=pag_fr, times=(next_block_tstart/1000.0, next_block_tstop/1000.0))
#     if psg.n_spikes() <= 0:
#         io.log_info('     no psg spikes generated by Poisson distritubtion')
#     self._spike_events = psg.get_times(0)
#     for gid in self._pag_neurons:
#         nc = self._netcons[gid]
#         for t in self._spike_events:
#             nc.event(t)
################ Activate higher order based on afferent firing rate ##############################
        if firing_rate > 10:
            pag_fr = 15
            psg = PoissonSpikeGenerator()
            # # Use homogeneous input
            # psg.add(node_ids=[0], firing_rate=pag_fr, times=(next_block_tstart, next_block_tstop))
            # spikes = psg.get_times([0])*1000
            # n_spikes = len(spikes)
            # io.log_info('     pag firing rate: {:.2f} Hz'.format(n_spikes/block_length))
            # if n_spikes>0:
            # io.log_info('Last spike: {:.1f} ms'.format(spikes[-1]))
            # for gid in self._pag_neurons:
            # self._spike_events[gid] = np.concatenate((self._spike_events[gid],spikes))
            # nc = self._netcons[gid]
            # for t in spikes:
            # nc.event(t)
            # Use inhomogeneous input
            n = len(self._pag_neurons)
            psg.add(node_ids=self._pag_neurons,
                    firing_rate=pag_fr,
                    times=(next_block_tstart, next_block_tstop))
            n_spikes = np.zeros(n)
            last_spike = 0.0
            for i, gid in enumerate(self._pag_neurons):
                spikes = psg.get_times(gid) * 1000
                n_spikes[i] = len(spikes)
                if n_spikes[i] > 0:
                    self._spike_events[gid] = np.concatenate(
                        (self._spike_events[gid], spikes))
                    nc = self._netcons[gid]
                    for t in spikes:
                        nc.event(t)
                    last_spike = max(last_spike, spikes[-1])
            io.log_info(
                '     pag firing rate: ' +
                ','.join(["%.2f" % (ns / block_length)
                          for ns in n_spikes]) + ' Hz')
            if last_spike > 0:
                io.log_info('Last spike: {:.1f} ms'.format(last_spike))

        io.log_info('\n')
Example #5
0
    def block(self, sim, block_interval):
        """This function is called every n steps during the simulation, as set in the config.json file (run/nsteps_block).

        We can use this to get the firing rate of PGN during the last block and use it to calculate
        firing rate for bladder afferent neuron
        """

        # Calculate the avg number of spikes per neuron
        block_length = sim.nsteps_block * sim.dt / 1000.0  #  time length of previous block of simulation TODO: precalcualte /1000
        n_gids = 0
        n_spikes = 0
        for gid, tvec in self._spike_records.items():
            n_gids += 1
            n_spikes += len(
                list(tvec)
            )  # use tvec generator. Calling this deletes the values in tvec

        # Calculate the firing rate the the low-level neuron(s)
        avg_spikes = n_spikes / (float(n_gids) * 1.0)
        fr = avg_spikes / float(block_length)

        # Grill function for polynomial fit according to PGN firing rate
        # Grill, et al. 2016
        def pgn_fire_rate(x):
            f = 2.0E-03 * x**3 - 3.3E-02 * x**2 + 1.8 * x - 0.5
            f = max(f, 0.0)
            return f

        # Grill function for polynomial fit according to bladder volume
# Grill, et al. 2016

        def blad_vol(vol):
            f = 1.5 * 20 * vol - 10  #1.5*20*vol-10
            return f

        # Grill function returning pressure in units of cm H20
# Grill, et al. 2016

        def pressure(fr, v):
            p = 0.2 * fr + 1.0 * v
            p = max(p, 0.0)
            return p

        # Grill function returning bladder afferent firing rate in units of Hz
# Grill, et al. 2016

        def blad_aff_fr(p):
            fr1 = -3.0E-08 * p**5 + 1.0E-5 * p**4 - 1.5E-03 * p**3 + 7.9E-02 * p**2 - 0.6 * p
            fr1 = max(fr1, 0.0)
            return fr1  # Using scaling factor of 5 here to get the correct firing rate range

        # Calculate bladder volume using Grill's polynomial fit equation
        v_init = 0.05  # TODO: get biological value for initial bladder volume
        fill = 0.05  # ml/min (Asselt et al. 2017)
        fill /= (1000 * 60)  # Scale from ml/min to ml/ms
        void = 4.6  # ml/min (Streng et al. 2002)
        void /= (1000 * 60)  # Scale from ml/min to ml/ms
        max_v = 1.5  # ml (Grill et al. 2019) #0.76
        vol = v_init

        # Update blad aff firing rate
        t = sim.h.t - block_length * 1000.0

        PGN_fr = pgn_fire_rate(fr)

        # Filling: 0 - 7000 ms
        # if t < 7000 and vol < max_v:
        # vol = fill*t*150 + v_init

        # Filling: 0 - 54000 ms
        if t < 60000 and vol < max_v:
            vol = fill * t * 20 + v_init

        # # Voiding: 7000 - 10,000 ms
        # else:
        # vol = max_v - void*(10000-t)*100

    # Voiding: 54000 - 60000 ms
    # else:
    # vol = max_v - void*(60000-t)*100

    # Maintain minimum volume
        if vol < v_init:
            vol = v_init
        grill_vol = blad_vol(vol)

        # Calculate pressure using Grill equation
        p = pressure(PGN_fr, grill_vol)

        # Update global pressure (to be used to determine if EUS motor
        # needs to be updated for guarding reflex)
        self._prev_glob_press = self._glob_press
        self._glob_press = p

        # Calculate bladder afferent firing rate using Grill equation
        bladaff_fr = blad_aff_fr(p)

        io.log_info('PGN firing rate = %.2f Hz' % fr)
        io.log_info('Volume = %.2f ml' % vol)
        io.log_info('Pressure = %.2f cm H20' % p)
        io.log_info(
            'Bladder afferent firing rate = {:.2f} Hz'.format(bladaff_fr))

        # Save values in appropriate lists
        self.times.append(t)
        self.b_vols.append(vol)
        self.b_pres.append(p)
        # b_aff.append(bladaff_fr)
        # pgn_fir.append(fr)

        # Set the activity of high-level neuron
        self._activate_hln(sim, block_interval, bladaff_fr)

        # NEURON requires resetting NetCon.record() every time we read the tvec.
        pc.barrier()
        self._set_spike_detector(sim)
Example #6
0
    def from_config(cls, config, network, set_recordings=True):
        simulation_inputs = inputs.from_config(config)

        # Special case for setting synapses to spontaneously (for a given set of pre-synaptic cell-types). Using this
        # input will change the way the network builds cells/connections and thus needs to be set first.
        for sim_input in simulation_inputs:
            if sim_input.input_type == 'syn_activity':
                network.set_spont_syn_activity(
                    precell_filter=sim_input.params['precell_filter'],
                    timestamps=sim_input.params['timestamps']
                )

        # The network must be built before initializing the simulator because
        # gap junctions must be set up before the simulation is initialized.
        network.io.log_info('Building cells.')
        network.build_nodes()

        network.io.log_info('Building recurrent connections')
        network.build_recurrent_edges()

        sim = cls(network=network,
                  dt=config.dt,
                  tstop=config.tstop,
                  v_init=config.v_init,
                  celsius=config.celsius,
                  nsteps_block=config.block_step)

        # TODO: Need to create a gid selector
        for sim_input in inputs.from_config(config):
            try:
                network.get_node_set(sim_input.node_set)
            except:
                print("Parameter node_set must be given in inputs module of simulation_config file. If unsure of what node_set should be, set it to 'all'.")
            node_set = network.get_node_set(sim_input.node_set)
            if sim_input.input_type == 'spikes':
                io.log_info('Building virtual cell stimulations for {}'.format(sim_input.name))
                path = sim_input.params['input_file']
                spikes = SpikeTrains.load(path=path, file_type=sim_input.module, **sim_input.params)
                network.add_spike_trains(spikes, node_set)

            elif sim_input.module == "FileIClamp":
                sim.attach_file_current_clamp(sim_input.params["input_file"])

            elif sim_input.module == 'IClamp':
                # TODO: Parse from csv file
                try: 
                    len(sim_input.params['amp'])
                except:
                    sim_input.params['amp']=[float(sim_input.params['amp'])]
                if len(sim_input.params['amp'])>1:
                    sim_input.params['amp']=[float(i) for i in sim_input.params['amp']]

                try: 
                    len(sim_input.params['delay'])
                except:
                    sim_input.params['delay']=[float(sim_input.params['delay'])]
                if len(sim_input.params['delay'])>1:
                    sim_input.params['delay']=[float(i) for i in sim_input.params['delay']]
                
                try: 
                    len(sim_input.params['duration'])
                except:
                    sim_input.params['duration']=[float(sim_input.params['duration'])]
                if len(sim_input.params['duration'])>1:
                    sim_input.params['duration']=[float(i) for i in sim_input.params['duration']]
                    
                amplitude = sim_input.params['amp']
                delay = sim_input.params['delay']
                duration = sim_input.params['duration']

                # specificed for location to place iclamp hobj.<section_name>[<section_index>](<section_dist>). The
                # default is hobj.soma[0](0.5), the center of the soma
                section_name = sim_input.params.get('section_name', 'soma')
                section_index = sim_input.params.get('section_index', 0)
                section_dist = sim_input.params.get('section_dist', 0.5)

                # section_name = section_name if isinstance(section_name, (list, tuple)) else [section_name]
                # section_index = section_index if isinstance(section_index, (list, tuple)) else [section_index]
                # section_dist = section_dist if isinstance(section_dist, (list, tuple)) else [section_dist]

                try:
                    sim_input.params['gids']
                except:
                    sim_input.params['gids'] = None
                if sim_input.params['gids'] is not None:
                    gids = sim_input.params['gids']
                else:
                    gids = list(node_set.gids())

                sim.attach_current_clamp(amplitude, delay, duration, gids, section_name, section_index, section_dist)

            elif sim_input.module == "SEClamp":
                try: 
                    len(sim_input.params['amps'])
                except:
                    sim_input.params['amps']=[float(sim_input.params['amps'])]
                
                try: 
                    len(sim_input.params['durations'])
                except:
                    sim_input.params['durations']=[float(sim_input.params['durations'])]
                    
                amplitudes = sim_input.params['amps']
                durations = sim_input.params['durations']
                rs = None

                if "rs" in sim_input.params.keys():
                    try: 
                        len(sim_input.params['rs'])
                    except:
                        sim_input.params['rs']=[float(sim_input.params['rs'])]
                    if len(sim_input.params['rs'])>1:
                        sim_input.params['rs']=[float(i) for i in sim_input.params['rs']]
                    rs = sim_input.params["rs"]
                                   
                try:
                    sim_input.params['gids']
                except:
                    sim_input.params['gids'] = None
                if sim_input.params['gids'] is not None:
                    gids = sim_input.params['gids']
                else:
                    gids = list(node_set.gids())

                sim.attach_se_voltage_clamp(amplitudes, durations, gids, rs)

            elif sim_input.module == 'xstim':
                sim.add_mod(mods.XStimMod(**sim_input.params))

            elif sim_input.module == 'syn_activity':
                pass

            else:
                io.log_exception('Can not parse input format {}'.format(sim_input.name))

        # Parse the "reports" section of the config and load an associated output module for each report
        sim_reports = reports.from_config(config)
        for report in sim_reports:
            if isinstance(report, reports.SpikesReport):
                mod = mods.SpikesMod(**report.params)

            elif report.module == 'netcon_report':
                mod = mods.NetconReport(**report.params)

            elif isinstance(report, reports.MembraneReport):
                if report.params['sections'] == 'soma':
                    mod = mods.SomaReport(**report.params)

                else:
                    mod = mods.MembraneReport(**report.params)
            elif isinstance(report, reports.ClampReport):
                mod = mods.ClampReport(**report.params)

            elif isinstance(report, reports.ECPReport):
                mod = mods.EcpMod(**report.params)
                # Set up the ability for ecp on all relevant cells
                # TODO: According to spec we need to allow a different subset other than only biophysical cells
                for gid, cell in network.cell_type_maps('biophysical').items():
                    cell.setup_ecp()

            elif report.module == 'save_synapses':
                mod = mods.SaveSynapses(**report.params)

            else:
                # TODO: Allow users to register customized modules using pymodules
                io.log_warning('Unrecognized module {}, skipping.'.format(report.module))
                continue

            sim.add_mod(mod)

        return sim
Example #7
0
 def __del__(self):
     io.log_info('Cleaning up simulation.')
Example #8
0
    def _activate_hln(self, sim, block_interval, firing_rate):
        next_block_tstart = (block_interval[1] +
                             1) * sim.dt  # The next time-step
        next_block_tstop = next_block_tstart + sim.nsteps_block * sim.dt  # The time-step when the next block ends

        # This is where you can use the firing-rate of the low-level neurons to generate a set of spike times for the
        # next block
        if firing_rate != 0.0:
            psg = PoissonSpikeGenerator()
            psg.add(node_ids=[0],
                    firing_rate=firing_rate,
                    times=(next_block_tstart, next_block_tstop))
            if psg.n_spikes() <= 0:
                io.log_info(
                    '     _activate_hln: firing rate {} did not produce any spikes'
                    .format(firing_rate))
            else:
                self._spike_events = psg.get_times(0)
                # Update firing rate of bladder afferent neurons
                for gid in self._high_level_neurons:
                    nc = self._netcons[gid]
                    for t in self._spike_events:
                        nc.event(t)
        else:
            io.log_info('     _activate_hln: firing rate 0')

        # If pressure is maxxed, update firing rate of EUS motor neurons
        # Guarding reflex
        # press_change = self._prev_glob_press - self._glob_press
        # if self._glob_press > press_thres or press_change > change_thres:
        # psg = PoissonSpikeGenerator()
        # eus_fr = self._glob_press*10 + press_change*10 # Assumption: guarding reflex
        # # depends on current pressure
        # # and change from last pressure
        # psg.add(node_ids=[0], firing_rate=eus_fr, times=(next_block_tstart, next_block_tstop))
        # self._spike_events = psg.get_times(0)
        # for gid in self._eus_neurons:
        # nc = self._netcons[gid]
        # for t in self._spike_events:
        # nc.event(t)
################ Activate higher order based on pressure threshold ##############################

# if block_interval[1] % 2000 == 1000:  # For fast testing, only add events to every other block
# if False:  # For testing
        if self._glob_press > press_thres:
            io.log_info('      updating pag input')
            psg = PoissonSpikeGenerator()
            print(press_thres)

            pag_fr = press_thres  #change
            psg.add(node_ids=[0],
                    firing_rate=pag_fr,
                    times=(next_block_tstart / 1000.0,
                           next_block_tstop / 1000.0))
            if psg.n_spikes() <= 0:
                io.log_info(
                    '     no psg spikes generated by Poisson distritubtion')
            self._spike_events = psg.get_times(0)
            for gid in self._pag_neurons:
                nc = self._netcons[gid]
                for t in self._spike_events:
                    nc.event(t)
Example #9
0
    def initialize(self, sim):
        network = sim.net

        #####  Make sure to save spikes vector and vector stim object
        # Attach a NetCon/synapse on the high-level neuron(s) soma. We can use the NetCon.event(time) method to send
        # a spike to the synapse. Which, is a spike occurs, the high-level neuron will inhibit the low-level neuron.
        self._spikes = h.Vector(np.array([]))  # start off with empty input
        vec_stim = h.VecStim()
        vec_stim.play(self._spikes)
        self._vect_stim = vec_stim

        self._high_level_neurons = list(
            sim.net.get_node_set('high_level_neurons').gids())
        self._pag_neurons = list(sim.net.get_node_set('pag_neurons').gids())
        # self._pag_neurons = [i for i in np.arange(50,75)]

        for gid in self._high_level_neurons:
            cell = sim.net.get_cell_gid(gid)

            # Create synapse
            # These values will determine how the high-level neuron behaves with the input
            new_syn = h.Exp2Syn(0.5, cell.hobj.soma[0])
            new_syn.e = 0.0
            new_syn.tau1 = 0.1
            new_syn.tau2 = 0.3

            nc = h.NetCon(self._vect_stim, new_syn)
            ##nc = h.NetCon(vec_stim, new_syn)
            nc.weight[0] = 0.5
            nc.delay = 1.0

            self._synapses[gid] = new_syn
            self._netcons[gid] = nc

        io.log_info('Found {} PAG neurons'.format(len(self._pag_neurons)))
        for gid in self._pag_neurons:
            trg_cell = network.get_cell_gid(
                gid)  # network._rank_node_ids['LUT'][51]
            syn = h.Exp2Syn(0.5, sec=trg_cell.hobj.soma[0])
            syn.e = 0.0
            syn.tau1 = 0.1
            syn.tau2 = 0.3
            self._synapses[gid] = syn

            nc = h.NetCon(self._vect_stim, syn)
            nc.weight[0] = 0.5
            nc.delay = 1.0
            self._netcons[gid] = nc

        # Attach another netcon to the low-level neuron(s) that will record
        self._low_level_neurons = list(
            sim.net.get_node_set('low_level_neurons').gids())
        for gid in self._low_level_neurons:
            cell = sim.net.get_cell_gid(gid)
            # NOTE: If you set the segment to 0.5 it will interfere with the record_spikes module. Neuron won't let
            # us record from the same place multiple times, so for now just set to 0.0. TODO: read and save spikes in biosimulator.
            nc = h.NetCon(cell.hobj.soma[0](0.0)._ref_v,
                          None,
                          sec=cell.hobj.soma[0])
            self._netcons[gid] = nc

        self._set_spike_detector(sim)