Example #1
0
 def makeCallback():
     nd = ocp.getDesignVars().size()
     nc = ocp._constraints.getG().size()
     c = C.PyFunction(
         MyCallback(),
         C.nlpsolverOut(x_opt=C.sp_dense(nd, 1),
                        cost=C.sp_dense(1, 1),
                        lambda_x=C.sp_dense(nd, 1),
                        lambda_g=C.sp_dense(nc, 1),
                        g=C.sp_dense(nc, 1)), [C.sp_dense(1, 1)])
     c.init()
     return c
 def addCallback():
     nd = len(boundsVec)
     nc = g.getLb().size()
     c = C.PyFunction(
         MyCallback(),
         C.nlpsolverOut(x=C.sp_dense(nd, 1),
                        f=C.sp_dense(1, 1),
                        lam_x=C.sp_dense(nd, 1),
                        lam_p=C.sp_dense(0, 1),
                        lam_g=C.sp_dense(nc, 1),
                        g=C.sp_dense(nc, 1)), [C.sp_dense(1, 1)])
     c.init()
     solver.setOption("iteration_callback", c)
Example #3
0
    def setupSolver(self,solverOpts=[],constraintFunOpts=[],callback=None):
        if not self.collocationIsSetup:
            raise ValueError("you forgot to call setupCollocation")
        
        g =   self._constraints.getG()
        lbg = self._constraints.getLb()
        ubg = self._constraints.getUb()

        # Nonlinear constraint function
        gfcn = CS.MXFunction([self._dvMap.vectorize()],[g])
        setFXOptions(gfcn,constraintFunOpts)
        
        # Objective function of the NLP
        if not hasattr(self,'_objective'):
            raise ValueError('need to set objective function')
        ofcn = CS.MXFunction([self._dvMap.vectorize()],[self._objective])

        # solver callback (optional)
        if callback is not None:
            nd = self._dvMap.vectorize().size()
            nc = self._constraints.getG().size()
    
            c = CS.PyFunction( callback,
                               CS.nlpsolverOut(x_opt = CS.sp_dense(nd,1),
                                               cost = CS.sp_dense(1,1),
                                               lambda_x = CS.sp_dense(nd,1),
                                               lambda_g = CS.sp_dense(nc,1),
                                               lambda_p = CS.sp_dense(0,1),
                                               g = CS.sp_dense(nc,1) ),
                               [CS.sp_dense(1,1)] )
            c.init()
            solverOpts.append( ("iteration_callback", c) )

        # Allocate an NLP solver
        self.solver = CS.IpoptSolver(ofcn,gfcn)
#        self.solver = CS.WorhpSolver(ofcn,gfcn)
#        self.solver = CS.SQPMethod(ofcn,gfcn)

        # Set options
        setFXOptions(self.solver, solverOpts)
        
        # initialize the solver
        self.solver.init()
        
        # Bounds on g
        self.solver.setInput(lbg,CS.NLP_LBG)
        self.solver.setInput(ubg,CS.NLP_UBG)

        self._gfcn = gfcn
Example #4
0
 def makeCallback():
     nd = ocp.getDesignVars().size()
     nc = ocp._constraints.getG().size()
     c = C.PyFunction(
         MyCallback(),
         C.nlpsolverOut(
             x_opt=C.sp_dense(nd, 1),
             cost=C.sp_dense(1, 1),
             lambda_x=C.sp_dense(nd, 1),
             lambda_g=C.sp_dense(nc, 1),
             g=C.sp_dense(nc, 1),
         ),
         [C.sp_dense(1, 1)],
     )
     c.init()
     return c
Example #5
0
 def addCallback():
     nd = len(boundsVec)
     nc = g.getLb().size()
     c = C.PyFunction(
         MyCallback(),
         C.nlpsolverOut(
             x=C.sp_dense(nd, 1),
             f=C.sp_dense(1, 1),
             lam_x=C.sp_dense(nd, 1),
             lam_p=C.sp_dense(0, 1),
             lam_g=C.sp_dense(nc, 1),
             g=C.sp_dense(nc, 1),
         ),
         [C.sp_dense(1, 1)],
     )
     c.init()
     solver.setOption("iteration_callback", c)