def __new__(cls, name, bases, attrs): # move column definitions into columns dict # and set default column names column_dict = OrderedDict() primary_keys = OrderedDict() pk_name = None # get inherited properties inherited_columns = OrderedDict() for base in bases: for k, v in getattr(base, '_defined_columns', {}).items(): inherited_columns.setdefault(k, v) # short circuit __abstract__ inheritance is_abstract = attrs['__abstract__'] = attrs.get('__abstract__', False) # short circuit __discriminator_value__ inheritance attrs['__discriminator_value__'] = attrs.get('__discriminator_value__') # TODO __default__ttl__ should be removed in the next major release options = attrs.get('__options__') or {} attrs['__default_ttl__'] = options.get('default_time_to_live') column_definitions = [(k, v) for k, v in attrs.items() if isinstance(v, columns.Column)] column_definitions = sorted(column_definitions, key=lambda x: x[1].position) is_polymorphic_base = any([c[1].discriminator_column for c in column_definitions]) column_definitions = [x for x in inherited_columns.items()] + column_definitions discriminator_columns = [c for c in column_definitions if c[1].discriminator_column] is_polymorphic = len(discriminator_columns) > 0 if len(discriminator_columns) > 1: raise ModelDefinitionException('only one discriminator_column can be defined in a model, {0} found'.format(len(discriminator_columns))) if attrs['__discriminator_value__'] and not is_polymorphic: raise ModelDefinitionException('__discriminator_value__ specified, but no base columns defined with discriminator_column=True') discriminator_column_name, discriminator_column = discriminator_columns[0] if discriminator_columns else (None, None) if isinstance(discriminator_column, (columns.BaseContainerColumn, columns.Counter)): raise ModelDefinitionException('counter and container columns cannot be used as discriminator columns') # find polymorphic base class polymorphic_base = None if is_polymorphic and not is_polymorphic_base: def _get_polymorphic_base(bases): for base in bases: if getattr(base, '_is_polymorphic_base', False): return base klass = _get_polymorphic_base(base.__bases__) if klass: return klass polymorphic_base = _get_polymorphic_base(bases) defined_columns = OrderedDict(column_definitions) # check for primary key if not is_abstract and not any([v.primary_key for k, v in column_definitions]): raise ModelDefinitionException("At least 1 primary key is required.") counter_columns = [c for c in defined_columns.values() if isinstance(c, columns.Counter)] data_columns = [c for c in defined_columns.values() if not c.primary_key and not isinstance(c, columns.Counter)] if counter_columns and data_columns: raise ModelDefinitionException('counter models may not have data columns') has_partition_keys = any(v.partition_key for (k, v) in column_definitions) def _transform_column(col_name, col_obj): column_dict[col_name] = col_obj if col_obj.primary_key: primary_keys[col_name] = col_obj col_obj.set_column_name(col_name) # set properties attrs[col_name] = ColumnDescriptor(col_obj) partition_key_index = 0 # transform column definitions for k, v in column_definitions: # don't allow a column with the same name as a built-in attribute or method if k in BaseModel.__dict__: raise ModelDefinitionException("column '{0}' conflicts with built-in attribute/method".format(k)) # counter column primary keys are not allowed if (v.primary_key or v.partition_key) and isinstance(v, columns.Counter): raise ModelDefinitionException('counter columns cannot be used as primary keys') # this will mark the first primary key column as a partition # key, if one hasn't been set already if not has_partition_keys and v.primary_key: v.partition_key = True has_partition_keys = True if v.partition_key: v._partition_key_index = partition_key_index partition_key_index += 1 overriding = column_dict.get(k) if overriding: v.position = overriding.position v.partition_key = overriding.partition_key v._partition_key_index = overriding._partition_key_index _transform_column(k, v) partition_keys = OrderedDict(k for k in primary_keys.items() if k[1].partition_key) clustering_keys = OrderedDict(k for k in primary_keys.items() if not k[1].partition_key) if attrs.get('__compute_routing_key__', True): key_cols = [c for c in partition_keys.values()] partition_key_index = dict((col.db_field_name, col._partition_key_index) for col in key_cols) key_cql_types = [c.cql_type for c in key_cols] key_serializer = staticmethod(lambda parts, proto_version: [t.to_binary(p, proto_version) for t, p in zip(key_cql_types, parts)]) else: partition_key_index = {} key_serializer = staticmethod(lambda parts, proto_version: None) # setup partition key shortcut if len(partition_keys) == 0: if not is_abstract: raise ModelException("at least one partition key must be defined") if len(partition_keys) == 1: pk_name = [x for x in partition_keys.keys()][0] attrs['pk'] = attrs[pk_name] else: # composite partition key case, get/set a tuple of values _get = lambda self: tuple(self._values[c].getval() for c in partition_keys.keys()) _set = lambda self, val: tuple(self._values[c].setval(v) for (c, v) in zip(partition_keys.keys(), val)) attrs['pk'] = property(_get, _set) # some validation col_names = set() for v in column_dict.values(): # check for duplicate column names if v.db_field_name in col_names: raise ModelException("{0} defines the column '{1}' more than once".format(name, v.db_field_name)) if v.clustering_order and not (v.primary_key and not v.partition_key): raise ModelException("clustering_order may be specified only for clustering primary keys") if v.clustering_order and v.clustering_order.lower() not in ('asc', 'desc'): raise ModelException("invalid clustering order '{0}' for column '{1}'".format(repr(v.clustering_order), v.db_field_name)) col_names.add(v.db_field_name) # create db_name -> model name map for loading db_map = {} for col_name, field in column_dict.items(): db_field = field.db_field_name if db_field != col_name: db_map[db_field] = col_name # add management members to the class attrs['_columns'] = column_dict attrs['_primary_keys'] = primary_keys attrs['_defined_columns'] = defined_columns # maps the database field to the models key attrs['_db_map'] = db_map attrs['_pk_name'] = pk_name attrs['_dynamic_columns'] = {} attrs['_partition_keys'] = partition_keys attrs['_partition_key_index'] = partition_key_index attrs['_key_serializer'] = key_serializer attrs['_clustering_keys'] = clustering_keys attrs['_has_counter'] = len(counter_columns) > 0 # add polymorphic management attributes attrs['_is_polymorphic_base'] = is_polymorphic_base attrs['_is_polymorphic'] = is_polymorphic attrs['_polymorphic_base'] = polymorphic_base attrs['_discriminator_column'] = discriminator_column attrs['_discriminator_column_name'] = discriminator_column_name attrs['_discriminator_map'] = {} if is_polymorphic_base else None # setup class exceptions DoesNotExistBase = None for base in bases: DoesNotExistBase = getattr(base, 'DoesNotExist', None) if DoesNotExistBase is not None: break DoesNotExistBase = DoesNotExistBase or attrs.pop('DoesNotExist', BaseModel.DoesNotExist) attrs['DoesNotExist'] = type('DoesNotExist', (DoesNotExistBase,), {}) MultipleObjectsReturnedBase = None for base in bases: MultipleObjectsReturnedBase = getattr(base, 'MultipleObjectsReturned', None) if MultipleObjectsReturnedBase is not None: break MultipleObjectsReturnedBase = MultipleObjectsReturnedBase or attrs.pop('MultipleObjectsReturned', BaseModel.MultipleObjectsReturned) attrs['MultipleObjectsReturned'] = type('MultipleObjectsReturned', (MultipleObjectsReturnedBase,), {}) # create the class and add a QuerySet to it klass = super(ModelMetaClass, cls).__new__(cls, name, bases, attrs) udts = [] for col in column_dict.values(): columns.resolve_udts(col, udts) for user_type in set(udts): user_type.register_for_keyspace(klass._get_keyspace()) return klass
class TableMetadata(object): """ A representation of the schema for a single table. """ keyspace = None """ An instance of :class:`~.KeyspaceMetadata`. """ name = None """ The string name of the table. """ partition_key = None """ A list of :class:`.ColumnMetadata` instances representing the columns in the partition key for this table. This will always hold at least one column. """ clustering_key = None """ A list of :class:`.ColumnMetadata` instances representing the columns in the clustering key for this table. These are all of the :attr:`.primary_key` columns that are not in the :attr:`.partition_key`. Note that a table may have no clustering keys, in which case this will be an empty list. """ @property def primary_key(self): """ A list of :class:`.ColumnMetadata` representing the components of the primary key for this table. """ return self.partition_key + self.clustering_key columns = None """ A dict mapping column names to :class:`.ColumnMetadata` instances. """ is_compact_storage = False options = None """ A dict mapping table option names to their specific settings for this table. """ recognized_options = ( "comment", "read_repair_chance", "dclocal_read_repair_chance", # kept to be safe, but see _build_table_options() "local_read_repair_chance", "replicate_on_write", "gc_grace_seconds", "bloom_filter_fp_chance", "caching", "compaction_strategy_class", "compaction_strategy_options", "min_compaction_threshold", "max_compaction_threshold", "compression_parameters", "min_index_interval", "max_index_interval", "index_interval", "speculative_retry", "rows_per_partition_to_cache", "memtable_flush_period_in_ms", "populate_io_cache_on_flush", "compaction", "compression", "default_time_to_live") compaction_options = { "min_compaction_threshold": "min_threshold", "max_compaction_threshold": "max_threshold", "compaction_strategy_class": "class"} triggers = None """ A dict mapping trigger names to :class:`.TriggerMetadata` instances. """ @property def is_cql_compatible(self): """ A boolean indicating if this table can be represented as CQL in export """ # no such thing as DCT in CQL incompatible = issubclass(self.comparator, types.DynamicCompositeType) # no compact storage with more than one column beyond PK incompatible |= self.is_compact_storage and len(self.columns) > len(self.primary_key) + 1 return not incompatible def __init__(self, keyspace_metadata, name, partition_key=None, clustering_key=None, columns=None, triggers=None, options=None): self.keyspace = keyspace_metadata self.name = name self.partition_key = [] if partition_key is None else partition_key self.clustering_key = [] if clustering_key is None else clustering_key self.columns = OrderedDict() if columns is None else columns self.options = options self.comparator = None self.triggers = OrderedDict() if triggers is None else triggers def export_as_string(self): """ Returns a string of CQL queries that can be used to recreate this table along with all indexes on it. The returned string is formatted to be human readable. """ if self.is_cql_compatible: ret = self.all_as_cql() else: # If we can't produce this table with CQL, comment inline ret = "/*\nWarning: Table %s.%s omitted because it has constructs not compatible with CQL (was created via legacy API).\n" % \ (self.keyspace.name, self.name) ret += "\nApproximate structure, for reference:\n(this should not be used to reproduce this schema)\n\n%s" % self.all_as_cql() ret += "\n*/" return ret def all_as_cql(self): ret = self.as_cql_query(formatted=True) ret += ";" for col_meta in self.columns.values(): if col_meta.index: ret += "\n%s;" % (col_meta.index.as_cql_query(),) for trigger_meta in self.triggers.values(): ret += "\n%s;" % (trigger_meta.as_cql_query(),) return ret def as_cql_query(self, formatted=False): """ Returns a CQL query that can be used to recreate this table (index creations are not included). If `formatted` is set to :const:`True`, extra whitespace will be added to make the query human readable. """ ret = "CREATE TABLE %s.%s (%s" % ( protect_name(self.keyspace.name), protect_name(self.name), "\n" if formatted else "") if formatted: column_join = ",\n" padding = " " else: column_join = ", " padding = "" columns = [] for col in self.columns.values(): columns.append("%s %s%s" % (protect_name(col.name), col.typestring, ' static' if col.is_static else '')) if len(self.partition_key) == 1 and not self.clustering_key: columns[0] += " PRIMARY KEY" ret += column_join.join("%s%s" % (padding, col) for col in columns) # primary key if len(self.partition_key) > 1 or self.clustering_key: ret += "%s%sPRIMARY KEY (" % (column_join, padding) if len(self.partition_key) > 1: ret += "(%s)" % ", ".join(protect_name(col.name) for col in self.partition_key) else: ret += self.partition_key[0].name if self.clustering_key: ret += ", %s" % ", ".join(protect_name(col.name) for col in self.clustering_key) ret += ")" # options ret += "%s) WITH " % ("\n" if formatted else "") option_strings = [] if self.is_compact_storage: option_strings.append("COMPACT STORAGE") if self.clustering_key: cluster_str = "CLUSTERING ORDER BY " clustering_names = protect_names([c.name for c in self.clustering_key]) if self.is_compact_storage and \ not issubclass(self.comparator, types.CompositeType): subtypes = [self.comparator] else: subtypes = self.comparator.subtypes inner = [] for colname, coltype in zip(clustering_names, subtypes): ordering = "DESC" if issubclass(coltype, types.ReversedType) else "ASC" inner.append("%s %s" % (colname, ordering)) cluster_str += "(%s)" % ", ".join(inner) option_strings.append(cluster_str) option_strings.extend(self._make_option_strings()) join_str = "\n AND " if formatted else " AND " ret += join_str.join(option_strings) return ret def _make_option_strings(self): ret = [] options_copy = dict(self.options.items()) if not options_copy.get('compaction'): options_copy.pop('compaction', None) actual_options = json.loads(options_copy.pop('compaction_strategy_options', '{}')) for system_table_name, compact_option_name in self.compaction_options.items(): value = options_copy.pop(system_table_name, None) if value: actual_options.setdefault(compact_option_name, value) compaction_option_strings = ["'%s': '%s'" % (k, v) for k, v in actual_options.items()] ret.append('compaction = {%s}' % ', '.join(compaction_option_strings)) for system_table_name in self.compaction_options.keys(): options_copy.pop(system_table_name, None) # delete if present options_copy.pop('compaction_strategy_option', None) if not options_copy.get('compression'): params = json.loads(options_copy.pop('compression_parameters', '{}')) param_strings = ["'%s': '%s'" % (k, v) for k, v in params.items()] ret.append('compression = {%s}' % ', '.join(param_strings)) for name, value in options_copy.items(): if value is not None: if name == "comment": value = value or "" ret.append("%s = %s" % (name, protect_value(value))) return list(sorted(ret))
class TableMetadata(object): """ A representation of the schema for a single table. """ keyspace = None """ An instance of :class:`~.KeyspaceMetadata`. """ name = None """ The string name of the table. """ partition_key = None """ A list of :class:`.ColumnMetadata` instances representing the columns in the partition key for this table. This will always hold at least one column. """ clustering_key = None """ A list of :class:`.ColumnMetadata` instances representing the columns in the clustering key for this table. These are all of the :attr:`.primary_key` columns that are not in the :attr:`.partition_key`. Note that a table may have no clustering keys, in which case this will be an empty list. """ @property def primary_key(self): """ A list of :class:`.ColumnMetadata` representing the components of the primary key for this table. """ return self.partition_key + self.clustering_key columns = None """ A dict mapping column names to :class:`.ColumnMetadata` instances. """ is_compact_storage = False options = None """ A dict mapping table option names to their specific settings for this table. """ recognized_options = ( "comment", "read_repair_chance", "dclocal_read_repair_chance", # kept to be safe, but see _build_table_options() "local_read_repair_chance", "replicate_on_write", "gc_grace_seconds", "bloom_filter_fp_chance", "caching", "compaction_strategy_class", "compaction_strategy_options", "min_compaction_threshold", "max_compaction_threshold", "compression_parameters", "min_index_interval", "max_index_interval", "index_interval", "speculative_retry", "rows_per_partition_to_cache", "memtable_flush_period_in_ms", "populate_io_cache_on_flush", "compaction", "compression", "default_time_to_live") compaction_options = { "min_compaction_threshold": "min_threshold", "max_compaction_threshold": "max_threshold", "compaction_strategy_class": "class" } def __init__(self, keyspace_metadata, name, partition_key=None, clustering_key=None, columns=None, options=None): self.keyspace = keyspace_metadata self.name = name self.partition_key = [] if partition_key is None else partition_key self.clustering_key = [] if clustering_key is None else clustering_key self.columns = OrderedDict() if columns is None else columns self.options = options self.comparator = None def export_as_string(self): """ Returns a string of CQL queries that can be used to recreate this table along with all indexes on it. The returned string is formatted to be human readable. """ ret = self.as_cql_query(formatted=True) ret += ";" for col_meta in self.columns.values(): if col_meta.index: ret += "\n%s;" % (col_meta.index.as_cql_query(), ) return ret def as_cql_query(self, formatted=False): """ Returns a CQL query that can be used to recreate this table (index creations are not included). If `formatted` is set to :const:`True`, extra whitespace will be added to make the query human readable. """ ret = "CREATE TABLE %s.%s (%s" % (protect_name( self.keyspace.name), protect_name( self.name), "\n" if formatted else "") if formatted: column_join = ",\n" padding = " " else: column_join = ", " padding = "" columns = [] for col in self.columns.values(): columns.append("%s %s%s" % (protect_name( col.name), col.typestring, ' static' if col.is_static else '')) if len(self.partition_key) == 1 and not self.clustering_key: columns[0] += " PRIMARY KEY" ret += column_join.join("%s%s" % (padding, col) for col in columns) # primary key if len(self.partition_key) > 1 or self.clustering_key: ret += "%s%sPRIMARY KEY (" % (column_join, padding) if len(self.partition_key) > 1: ret += "(%s)" % ", ".join( protect_name(col.name) for col in self.partition_key) else: ret += self.partition_key[0].name if self.clustering_key: ret += ", %s" % ", ".join( protect_name(col.name) for col in self.clustering_key) ret += ")" # options ret += "%s) WITH " % ("\n" if formatted else "") option_strings = [] if self.is_compact_storage: option_strings.append("COMPACT STORAGE") if self.clustering_key: cluster_str = "CLUSTERING ORDER BY " clustering_names = protect_names( [c.name for c in self.clustering_key]) if self.is_compact_storage and \ not issubclass(self.comparator, types.CompositeType): subtypes = [self.comparator] else: subtypes = self.comparator.subtypes inner = [] for colname, coltype in zip(clustering_names, subtypes): ordering = "DESC" if issubclass(coltype, types.ReversedType) else "ASC" inner.append("%s %s" % (colname, ordering)) cluster_str += "(%s)" % ", ".join(inner) option_strings.append(cluster_str) option_strings.extend(self._make_option_strings()) join_str = "\n AND " if formatted else " AND " ret += join_str.join(option_strings) return ret def _make_option_strings(self): ret = [] options_copy = dict(self.options.items()) if not options_copy.get('compaction'): options_copy.pop('compaction', None) actual_options = json.loads( options_copy.pop('compaction_strategy_options', '{}')) for system_table_name, compact_option_name in self.compaction_options.items( ): value = options_copy.pop(system_table_name, None) if value: actual_options.setdefault(compact_option_name, value) compaction_option_strings = [ "'%s': '%s'" % (k, v) for k, v in actual_options.items() ] ret.append('compaction = {%s}' % ', '.join(compaction_option_strings)) for system_table_name in self.compaction_options.keys(): options_copy.pop(system_table_name, None) # delete if present options_copy.pop('compaction_strategy_option', None) if not options_copy.get('compression'): params = json.loads( options_copy.pop('compression_parameters', '{}')) if params: param_strings = [ "'%s': '%s'" % (k, v) for k, v in params.items() ] ret.append('compression = {%s}' % ', '.join(param_strings)) for name, value in options_copy.items(): if value is not None: if name == "comment": value = value or "" ret.append("%s = %s" % (name, protect_value(value))) return list(sorted(ret))