Example #1
0
def generate_Mantis_version(forward, backward):
    mantis = CipherDescription(64)
    wordsize = 4
    mantis.add_sbox('S-box', midori_sbox)

    def S():
        for i in range(16):
            bits = []
            for j in range(wordsize):
                bits.append("s{}".format(wordsize * i + wordsize - 1 - j))
            mantis.apply_sbox('S-box', bits, bits)

    def R():
        S()
        mantis.shufflewords(shuffle, wordsize, 1)
        mantis.apply_MC(wordsize, MC, Rp, 4, 4)

    def Ri():
        mantis.apply_MC(wordsize, MC, Rp, 4, 4)
        mantis.shufflewords(shufflei, wordsize, 1)
        S()

    #Forward rounds
    for i in range(forward):
        R()
    #Middle
    S()
    mantis.apply_MC(wordsize, MC, Rp, 4, 4)
    S()
    #Inverse rounds
    for i in range(backward):
        Ri()

    return mantis
Example #2
0
def generate_test_version(wordsize):
    # State
    # 0 4  8 12
    # 1 5  9 13
    # 2 6 10 14
    # 3 7 11 15
    test = CipherDescription(16*wordsize)
    

    midori_sbox = [0xC, 0xA, 0xD, 0x3, 0xE, 0xB, 0xF, 0x7,
                   0x8, 0x9, 0x1, 0x5, 0x0, 0x2, 0x4, 0x6]
                       
    shuffle = [0,10,5,15, 14,4,11,1, 9,3,12,6, 7,13,2,8]
    MC = [[0, 1, 1, 1],
          [1, 0, 1, 1],
          [1, 1, 0, 1],
          [1, 1, 1, 0]]
    Rp = 0
    test.add_sbox('S-box', midori_sbox)
    for i in range(16):
        bits = []
        for j in range(wordsize):
            bits.append("s{}".format(wordsize*i + wordsize - 1 - j))
        test.apply_sbox('S-box', bits, bits)
    
    
    test.shufflewords(shuffle,wordsize)
    
    
    # MixColumn
    test.apply_MC(wordsize, MC, Rp, 4, 4)
  
    return test
Example #3
0
def generate_AES():

    AES = CipherDescription(128)

    #Add the appropriate sbox

    sbox = [
        0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b,
        0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
        0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26,
        0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
        0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2,
        0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
        0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed,
        0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
        0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f,
        0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
        0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
        0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
        0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14,
        0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
        0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d,
        0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
        0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f,
        0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
        0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11,
        0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
        0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f,
        0xb0, 0x54, 0xbb, 0x16
    ]

    AES.add_sbox('S-box', sbox)

    #Apply the sbox to all cells
    for i in range(16):
        bits = []
        for j in range(8):
            bits.append("s{}".format(8 * i + 7 - j))
        AES.apply_sbox('S-box', bits, bits)

    #Define and apply shiftrows
    tshuffle = []
    for i in range(4):
        tshuffle.append([((j + i) % 4) * 4 + i for j in range(4)])

    shuffle = []
    for i in range(4):
        for j in range(4):
            shuffle.append(tshuffle[j][i])

    AES.shufflewords(shuffle, 8, 1)

    #Apply MixColumns
    MC = [[2, 3, 1, 1], [1, 2, 3, 1], [1, 1, 2, 3], [3, 1, 1, 2]]
    IP = 0x1b
    AES.apply_MC(8, MC, IP, 4, 4)

    return AES
Example #4
0
def generate_QARMA_version(wordsize,sigma,f,b):
    QARMA = CipherDescription(16*wordsize)

    # State
    # 0 4  8 12
    # 1 5  9 13
    # 2 6 10 14
    # 3 7 11 15

    s0 = [ 0, 14, 2, 10, 9, 15, 8, 11, 6, 4, 3, 7, 13, 12, 1, 5 ]
    s1 = [ 10, 13, 14, 6, 15, 7, 3, 5, 9, 8, 0, 12, 11, 1, 2, 4 ]
    s2 = [ 11, 6, 8, 15, 12, 0, 9, 14, 3, 7, 4, 5, 13, 2, 1, 10 ]
    s2i = [ 5, 14, 13, 8, 10, 11, 1, 9, 2, 6, 15, 0, 4, 12, 7, 3 ]

    IP = 1

    if sigma == 0:
        QARMA.add_sbox("S-box", s0)
        QARMA.add_sbox("S-boxinverse", s0)
    elif sigma == 1:
        QARMA.add_sbox("S-box", s1)
        QARMA.add_sbox("S-boxinverse", s1)
    else:
        QARMA.add_sbox("S-box", s2)
        QARMA.add_sbox("S-boxinverse", s2i)

    def S():
        if wordsize == 4:
            for i in range(16):
                bits = []
                for j in range(4):
                    bits.append("s{}".format(4*i + 3 - j))
                QARMA.apply_sbox('S-box', bits, bits)
        else:
            for i in range(32):
                bits = []
                for j in range(4):
                    bits.append("s{}".format(4*i + 3 - j))
                QARMA.apply_sbox('S-box', bits, bits)
                # Permute output bits

            for i in range(16):
                shuffle_bits_first_sbox = ["s{}".format(8*i + j) for j in [1, 2, 4]]
                shuffle_bits_secnd_sbox = ["s{}".format(8*i + j) for j in [3, 6, 5]]
                QARMA.apply_permutation(shuffle_bits_first_sbox)
                QARMA.apply_permutation(shuffle_bits_secnd_sbox)
            #     for j in range(8):
            #         QARMA.apply_mov("s{}".format(8*i+j),"t{}".format(j))
            #
            #     for j in range(4):
            #         QARMA.apply_mov("t{}".format(2*j),"s{}".format(8*i+j))
            #     for j in range(4):
            #         QARMA.apply_mov("t{}".format(2*j+1),"s{}".format(8*i+j+4))

    def Si():
        if wordsize == 4:
            for i in range(16):
                bits = []
                for j in range(4):
                    bits.append("s{}".format(4*i + 3 - j))
                QARMA.apply_sbox('S-boxinverse', bits, bits)
        else:
            for i in range(16):
                shuffle_bits_first_sbox = ["s{}".format(8*i + j) for j in [4, 2, 1]]
                shuffle_bits_secnd_sbox = ["s{}".format(8*i + j) for j in [5, 6, 3]]
                QARMA.apply_permutation(shuffle_bits_first_sbox)
                QARMA.apply_permutation(shuffle_bits_secnd_sbox)
            for i in range(32):
                bits = []
                for j in range(4):
                    bits.append("s{}".format(4*i + 3 - j))
                QARMA.apply_sbox('S-boxinverse', bits, bits)



    if wordsize == 4:
        MC = [[0,2,4,2],
              [2,0,2,4],
              [4,2,0,2],
              [2,4,2,0]]
    else:
        MC = [[0,2,16,32],
              [32,0,2,16],
              [16,32,0,2],
              [2,16,32,0]]

    shuffle = [0,10,5,15, 14,4,11,1, 9,3,12,6, 7,13,2,8]
    shufflei = [0,7,14,9, 5,2,11,12, 15,8,1,6, 10,13,4,3]

    def R():
        QARMA.shufflewords(shuffle,wordsize,1)
        QARMA.apply_MC(wordsize,MC,IP,4,4)
        S()

    def Ri():
        Si()
        QARMA.apply_MC(wordsize,MC,IP,4,4)
        QARMA.shufflewords(shufflei,wordsize,1)

    #Forward rounds
    S()
    for r in range(f):
        R()
    #Middle round
    QARMA.shufflewords(shuffle,wordsize,1)
    QARMA.apply_MC(wordsize,MC,IP,4,4)
    QARMA.shufflewords(shufflei,wordsize,1)
    #Backwards rounds
    for r in range(b):
        Ri()
    Si()

    return QARMA