def generate_Mantis_version(forward, backward): mantis = CipherDescription(64) wordsize = 4 mantis.add_sbox('S-box', midori_sbox) def S(): for i in range(16): bits = [] for j in range(wordsize): bits.append("s{}".format(wordsize * i + wordsize - 1 - j)) mantis.apply_sbox('S-box', bits, bits) def R(): S() mantis.shufflewords(shuffle, wordsize, 1) mantis.apply_MC(wordsize, MC, Rp, 4, 4) def Ri(): mantis.apply_MC(wordsize, MC, Rp, 4, 4) mantis.shufflewords(shufflei, wordsize, 1) S() #Forward rounds for i in range(forward): R() #Middle S() mantis.apply_MC(wordsize, MC, Rp, 4, 4) S() #Inverse rounds for i in range(backward): Ri() return mantis
def generate_test_version(wordsize): # State # 0 4 8 12 # 1 5 9 13 # 2 6 10 14 # 3 7 11 15 test = CipherDescription(16*wordsize) midori_sbox = [0xC, 0xA, 0xD, 0x3, 0xE, 0xB, 0xF, 0x7, 0x8, 0x9, 0x1, 0x5, 0x0, 0x2, 0x4, 0x6] shuffle = [0,10,5,15, 14,4,11,1, 9,3,12,6, 7,13,2,8] MC = [[0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 0, 1], [1, 1, 1, 0]] Rp = 0 test.add_sbox('S-box', midori_sbox) for i in range(16): bits = [] for j in range(wordsize): bits.append("s{}".format(wordsize*i + wordsize - 1 - j)) test.apply_sbox('S-box', bits, bits) test.shufflewords(shuffle,wordsize) # MixColumn test.apply_MC(wordsize, MC, Rp, 4, 4) return test
def generate_AES(): AES = CipherDescription(128) #Add the appropriate sbox sbox = [ 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 ] AES.add_sbox('S-box', sbox) #Apply the sbox to all cells for i in range(16): bits = [] for j in range(8): bits.append("s{}".format(8 * i + 7 - j)) AES.apply_sbox('S-box', bits, bits) #Define and apply shiftrows tshuffle = [] for i in range(4): tshuffle.append([((j + i) % 4) * 4 + i for j in range(4)]) shuffle = [] for i in range(4): for j in range(4): shuffle.append(tshuffle[j][i]) AES.shufflewords(shuffle, 8, 1) #Apply MixColumns MC = [[2, 3, 1, 1], [1, 2, 3, 1], [1, 1, 2, 3], [3, 1, 1, 2]] IP = 0x1b AES.apply_MC(8, MC, IP, 4, 4) return AES
def generate_QARMA_version(wordsize,sigma,f,b): QARMA = CipherDescription(16*wordsize) # State # 0 4 8 12 # 1 5 9 13 # 2 6 10 14 # 3 7 11 15 s0 = [ 0, 14, 2, 10, 9, 15, 8, 11, 6, 4, 3, 7, 13, 12, 1, 5 ] s1 = [ 10, 13, 14, 6, 15, 7, 3, 5, 9, 8, 0, 12, 11, 1, 2, 4 ] s2 = [ 11, 6, 8, 15, 12, 0, 9, 14, 3, 7, 4, 5, 13, 2, 1, 10 ] s2i = [ 5, 14, 13, 8, 10, 11, 1, 9, 2, 6, 15, 0, 4, 12, 7, 3 ] IP = 1 if sigma == 0: QARMA.add_sbox("S-box", s0) QARMA.add_sbox("S-boxinverse", s0) elif sigma == 1: QARMA.add_sbox("S-box", s1) QARMA.add_sbox("S-boxinverse", s1) else: QARMA.add_sbox("S-box", s2) QARMA.add_sbox("S-boxinverse", s2i) def S(): if wordsize == 4: for i in range(16): bits = [] for j in range(4): bits.append("s{}".format(4*i + 3 - j)) QARMA.apply_sbox('S-box', bits, bits) else: for i in range(32): bits = [] for j in range(4): bits.append("s{}".format(4*i + 3 - j)) QARMA.apply_sbox('S-box', bits, bits) # Permute output bits for i in range(16): shuffle_bits_first_sbox = ["s{}".format(8*i + j) for j in [1, 2, 4]] shuffle_bits_secnd_sbox = ["s{}".format(8*i + j) for j in [3, 6, 5]] QARMA.apply_permutation(shuffle_bits_first_sbox) QARMA.apply_permutation(shuffle_bits_secnd_sbox) # for j in range(8): # QARMA.apply_mov("s{}".format(8*i+j),"t{}".format(j)) # # for j in range(4): # QARMA.apply_mov("t{}".format(2*j),"s{}".format(8*i+j)) # for j in range(4): # QARMA.apply_mov("t{}".format(2*j+1),"s{}".format(8*i+j+4)) def Si(): if wordsize == 4: for i in range(16): bits = [] for j in range(4): bits.append("s{}".format(4*i + 3 - j)) QARMA.apply_sbox('S-boxinverse', bits, bits) else: for i in range(16): shuffle_bits_first_sbox = ["s{}".format(8*i + j) for j in [4, 2, 1]] shuffle_bits_secnd_sbox = ["s{}".format(8*i + j) for j in [5, 6, 3]] QARMA.apply_permutation(shuffle_bits_first_sbox) QARMA.apply_permutation(shuffle_bits_secnd_sbox) for i in range(32): bits = [] for j in range(4): bits.append("s{}".format(4*i + 3 - j)) QARMA.apply_sbox('S-boxinverse', bits, bits) if wordsize == 4: MC = [[0,2,4,2], [2,0,2,4], [4,2,0,2], [2,4,2,0]] else: MC = [[0,2,16,32], [32,0,2,16], [16,32,0,2], [2,16,32,0]] shuffle = [0,10,5,15, 14,4,11,1, 9,3,12,6, 7,13,2,8] shufflei = [0,7,14,9, 5,2,11,12, 15,8,1,6, 10,13,4,3] def R(): QARMA.shufflewords(shuffle,wordsize,1) QARMA.apply_MC(wordsize,MC,IP,4,4) S() def Ri(): Si() QARMA.apply_MC(wordsize,MC,IP,4,4) QARMA.shufflewords(shufflei,wordsize,1) #Forward rounds S() for r in range(f): R() #Middle round QARMA.shufflewords(shuffle,wordsize,1) QARMA.apply_MC(wordsize,MC,IP,4,4) QARMA.shufflewords(shufflei,wordsize,1) #Backwards rounds for r in range(b): Ri() Si() return QARMA