Example #1
0
    def build(self, corpora, working_dir='.', log_file=None):
        if not os.path.isdir(working_dir):
            fileutils.makedirs(working_dir, exist_ok=True)
        if not os.path.isdir(self._model):
            fileutils.makedirs(self._model, exist_ok=True)

        merged_corpus = BilingualCorpus.make_parallel(
            'merge', working_dir, (self._source_lang, self._target_lang))

        fileutils.merge(
            [corpus.get_file(self._source_lang) for corpus in corpora],
            merged_corpus.get_file(self._source_lang))
        fileutils.merge(
            [corpus.get_file(self._target_lang) for corpus in corpora],
            merged_corpus.get_file(self._target_lang))

        log = shell.DEVNULL

        try:
            if log_file is not None:
                log = open(log_file, 'a')

            # Train model
            command = [
                self._build_bin, '-s',
                merged_corpus.get_file(self._source_lang), '-t',
                merged_corpus.get_file(self._target_lang), '-m', self._model,
                '-I', '4'
            ]
            shell.execute(command, stderr=log)
        finally:
            if log_file is not None:
                log.close()
Example #2
0
    def build(self, corpora, working_dir='.', log_file=None):
        if not os.path.isdir(working_dir):
            fileutils.makedirs(working_dir, exist_ok=True)
        if not os.path.isdir(self._model):
            fileutils.makedirs(self._model, exist_ok=True)

        merged_corpus = BilingualCorpus.make_parallel('merge', working_dir, (self._source_lang, self._target_lang))

        fileutils.merge([corpus.get_file(self._source_lang) for corpus in corpora],
                        merged_corpus.get_file(self._source_lang))
        fileutils.merge([corpus.get_file(self._target_lang) for corpus in corpora],
                        merged_corpus.get_file(self._target_lang))

        log = shell.DEVNULL

        try:
            if log_file is not None:
                log = open(log_file, 'a')

            # Train model
            command = [self._build_bin,
                       '-s', merged_corpus.get_file(self._source_lang), '-t', merged_corpus.get_file(self._target_lang),
                       '-m', self._model, '-I', '4']
            shell.execute(command, stderr=log)
        finally:
            if log_file is not None:
                log.close()
Example #3
0
File: lm.py Project: kmlx/MMT
    def train(self, corpora, lang, working_dir='.', log_file=None):
        LanguageModel.train(self, corpora, lang, working_dir, log_file)

        log = shell.DEVNULL

        try:
            if log_file is not None:
                log = open(log_file, 'w') if isinstance(log_file, str) else log_file

            # Collapse all corpora into a single text file
            merged_corpus = os.path.join(working_dir, 'merge')
            fileutils.merge([corpus.get_file(lang) for corpus in corpora], merged_corpus)

            # Create language model in ARPA format
            arpa_file = os.path.join(working_dir, 'lm.arpa')
            arpa_command = [self._lmplz_bin, '--discount_fallback', '-o', str(self._order),
                            '-S', str(self.get_mem_percent()) + '%', '-T', working_dir]
            if self._order > 2 and self.prune:
                arpa_command += ['--prune', '0', '0', '1']

            with open(merged_corpus) as stdin:
                with open(arpa_file, 'w') as stdout:
                    shell.execute(arpa_command, stdin=stdin, stdout=stdout, stderr=log)

            # Binarize ARPA file
            binarize_command = [self._bbinary_bin, arpa_file, self._model]
            shell.execute(binarize_command, stdout=log, stderr=log)
        finally:
            if log_file is not None and isinstance(log_file, str):
                log.close()
Example #4
0
    def build(self, corpora, working_dir='.', log=None):
        if log is None:
            log = shell.DEVNULL

        shutil.rmtree(self._model, ignore_errors=True)
        fileutils.makedirs(self._model, exist_ok=True)

        if not os.path.isdir(working_dir):
            fileutils.makedirs(working_dir, exist_ok=True)

        merged_corpus = BilingualCorpus.make_parallel(
            'merge', working_dir, (self._source_lang, self._target_lang))

        fileutils.merge(
            [corpus.get_file(self._source_lang) for corpus in corpora],
            merged_corpus.get_file(self._source_lang))
        fileutils.merge(
            [corpus.get_file(self._target_lang) for corpus in corpora],
            merged_corpus.get_file(self._target_lang))

        command = [
            self._build_bin, '-s',
            merged_corpus.get_file(self._source_lang), '-t',
            merged_corpus.get_file(self._target_lang), '-m', self._model, '-I',
            '4'
        ]
        shell.execute(command, stdout=log, stderr=log)
Example #5
0
File: lm.py Project: livinappy/MMT
    def train(self, corpora, lang, working_dir='.', log=None):
        if log is None:
            log = shell.DEVNULL

        LanguageModel.train(self, corpora, lang, working_dir, log)

        # Collapse all corpora into a single text file
        merged_corpus = os.path.join(working_dir, 'merge')
        fileutils.merge([corpus.get_file(lang) for corpus in corpora],
                        merged_corpus)

        # Create language model in ARPA format
        arpa_file = os.path.join(working_dir, 'lm.arpa')
        arpa_command = [
            self._lmplz_bin, '--discount_fallback', '-o',
            str(self._order), '-S',
            str(self.get_mem_percent()) + '%', '-T', working_dir
        ]
        if self._order > 2 and self.prune:
            arpa_command += ['--prune', '0', '0', '1']

        with open(merged_corpus) as stdin:
            with open(arpa_file, 'w') as stdout:
                shell.execute(arpa_command,
                              stdin=stdin,
                              stdout=stdout,
                              stderr=log)

        # Binarize ARPA file
        binarize_command = [self._bbinary_bin, arpa_file, self._model]
        shell.execute(binarize_command, stdout=log, stderr=log)
Example #6
0
    def train(self, corpora, lang, working_dir='.', log_file=None):
        LanguageModel.train(self, corpora, lang, working_dir, log_file)

        bicorpora = []
        for corpus in corpora:
            if len(corpus.langs) > 1:
                bicorpora.append(corpus)

        log = shell.DEVNULL

        try:
            if log_file is not None:
                log = open(log_file, 'w')

            fileutils.makedirs(self._model, exist_ok=True)

            # Train static LM
            static_lm_model = os.path.join(self._model, 'background.slm')
            static_lm_wdir = os.path.join(working_dir, 'slm.temp')

            fileutils.makedirs(static_lm_wdir, exist_ok=True)

            merged_corpus = os.path.join(working_dir, 'merged_corpus')
            fileutils.merge([corpus.get_file(lang) for corpus in corpora],
                            merged_corpus)

            command = [
                self._create_slm_bin, '--discount_fallback', '-o',
                str(self._order), '--model', static_lm_model, '-S',
                str(KenLM.get_mem_percent()) + '%', '-T', static_lm_wdir
            ]
            if self._order > 2 and self.prune:
                command += ['--prune', '0', '0', '1']

            with open(merged_corpus) as stdin:
                shell.execute(command, stdin=stdin, stdout=log, stderr=log)

            # Create AdaptiveLM training folder
            alm_train_folder = os.path.join(working_dir, 'alm_train')
            fileutils.makedirs(alm_train_folder, exist_ok=True)

            for corpus in bicorpora:
                os.symlink(
                    corpus.get_file(lang),
                    os.path.join(alm_train_folder, corpus.name + '.' + lang))

            # Train adaptive LM
            adaptive_lm_model = os.path.join(self._model, 'foreground.alm')
            fileutils.makedirs(adaptive_lm_model, exist_ok=True)

            command = [
                self._create_alm_bin, '-m', adaptive_lm_model, '-i',
                alm_train_folder, '-b', '100000000'
            ]
            shell.execute(command, stdout=log, stderr=log)
        finally:
            if log_file is not None:
                log.close()
Example #7
0
    def train(self, corpora, lang, working_dir='.', log=None):
        if log is None:
            log = shell.DEVNULL

        bicorpora = []
        for corpus in corpora:
            if len(corpus.langs) > 1:
                bicorpora.append(corpus)

        shutil.rmtree(self._model, ignore_errors=True)
        fileutils.makedirs(self._model, exist_ok=True)

        if not os.path.isdir(working_dir):
            fileutils.makedirs(working_dir, exist_ok=True)

        # Train static LM
        static_lm_model = os.path.join(self._model, 'background.slm')
        static_lm_wdir = os.path.join(working_dir, 'slm.temp')

        fileutils.makedirs(static_lm_wdir, exist_ok=True)

        merged_corpus = os.path.join(working_dir, 'merged_corpus')
        fileutils.merge([corpus.get_file(lang) for corpus in corpora],
                        merged_corpus)

        command = [
            self._create_slm_bin, '--discount-fallback', '-o',
            str(self._order), '-a',
            str(self._compression), '-q',
            str(self._quantization), '--type', 'trie', '--model',
            static_lm_model, '-T', static_lm_wdir
        ]
        if self._order > 2 and self._prune:
            command += ['--prune', '0', '1', '2']

        with open(merged_corpus) as stdin:
            shell.execute(command, stdin=stdin, stdout=log, stderr=log)

        # Create AdaptiveLM training folder
        alm_train_folder = os.path.join(working_dir, 'alm_train')
        fileutils.makedirs(alm_train_folder, exist_ok=True)

        for corpus in bicorpora:
            os.symlink(
                corpus.get_file(lang),
                os.path.join(alm_train_folder, corpus.name + '.' + lang))

        # Train adaptive LM
        adaptive_lm_model = os.path.join(self._model, 'foreground.alm')
        fileutils.makedirs(adaptive_lm_model, exist_ok=True)

        command = [
            self._create_alm_bin, '-m', adaptive_lm_model, '-i',
            alm_train_folder, '-b', '50000000'
        ]
        shell.execute(command, stdout=log, stderr=log)
Example #8
0
    def train(self, corpora, aligner, working_dir='.', log_file=None):
        if os.path.isdir(self._model) and len(os.listdir(self._model)) > 0:
            raise Exception('Model already exists at ' + self._model)

        if not os.path.isdir(self._model):
            fileutils.makedirs(self._model, exist_ok=True)

        if not os.path.isdir(working_dir):
            fileutils.makedirs(working_dir, exist_ok=True)

        l1 = self._source_lang
        l2 = self._target_lang
        langs = (l1, l2)
        langs_suffix = l1 + '-' + l2

        mct_base = self._get_model_basename()
        dmp_file = mct_base + '.dmp'
        mam_file = mct_base + '.' + langs_suffix + '.mam'
        lex_file = mct_base + '.' + langs_suffix + '.lex'

        log = shell.DEVNULL

        try:
            if log_file is not None:
                log = open(log_file, 'a')

            # Clean corpus for training
            clean_output = os.path.join(working_dir, 'clean_corpora')
            fileutils.makedirs(clean_output, exist_ok=True)
            corpora = self._cleaner.clean(corpora, clean_output, (self._source_lang, self._target_lang))

            # Create merged corpus and domains list file (dmp)
            merged_corpus = BilingualCorpus.make_parallel(os.path.basename(mct_base), working_dir, langs)

            fileutils.merge([corpus.get_file(l1) for corpus in corpora], merged_corpus.get_file(l1))
            fileutils.merge([corpus.get_file(l2) for corpus in corpora], merged_corpus.get_file(l2))
            with open(dmp_file, 'w') as dmp:
                for corpus in corpora:
                    dmp.write(str(corpus.name) + ' ' + str(corpus.count_lines()) + '\n')

            # Create alignments in 'bal' file and symmetrize
            bal_file = aligner.align(merged_corpus, langs, self._model, working_dir, log_file)

            symal_file = os.path.join(working_dir, 'alignments.' + langs_suffix + '.symal')
            symal_command = [self._symal_bin, '-a=g', '-d=yes', '-f=yes', '-b=yes']
            with open(bal_file) as stdin:
                with open(symal_file, 'w') as stdout:
                    shell.execute(symal_command, stdin=stdin, stdout=stdout, stderr=log)

            # Execute mtt-build
            mttbuild_command = self._get_mttbuild_command(mct_base, dmp_file, l1)
            with open(merged_corpus.get_file(l1)) as stdin:
                shell.execute(mttbuild_command, stdin=stdin, stdout=log, stderr=log)

            mttbuild_command = self._get_mttbuild_command(mct_base, dmp_file, l2)
            with open(merged_corpus.get_file(l2)) as stdin:
                shell.execute(mttbuild_command, stdin=stdin, stdout=log, stderr=log)

            # Create 'mam' file
            mam_command = [self._symal2mam_bin, mam_file]
            with open(symal_file) as stdin:
                shell.execute(mam_command, stdin=stdin, stdout=log, stderr=log)

            # Create 'lex' file
            lex_command = [self._mmlexbuild_bin, mct_base + '.', l1, l2, '-o', lex_file]
            shell.execute(lex_command, stdout=log, stderr=log)
        finally:
            if log_file is not None:
                log.close()
Example #9
0
    def tune(self,
             corpora=None,
             debug=False,
             context_enabled=True,
             random_seeds=False,
             max_iterations=25,
             early_stopping_value=None):
        if corpora is None:
            corpora = BilingualCorpus.list(
                os.path.join(self.engine.data_path,
                             TrainingPreprocessor.DEV_FOLDER_NAME))

        target_lang = self.engine.target_lang
        source_lang = self.engine.source_lang

        corpora = [
            corpus for corpus in corpora
            if source_lang in corpus.langs and target_lang in corpus.langs
        ]
        if len(corpora) == 0:
            raise IllegalArgumentException(
                'No %s > %s corpora found into specified path' %
                (source_lang, target_lang))

        source_corpora = [
            BilingualCorpus.make_parallel(corpus.name, corpus.get_folder(),
                                          [source_lang]) for corpus in corpora
        ]
        reference_corpora = [
            BilingualCorpus.make_parallel(corpus.name, corpus.get_folder(),
                                          [target_lang]) for corpus in corpora
        ]

        cmdlogger = _tuning_logger(4)
        cmdlogger.start(self, corpora)

        working_dir = self.engine.get_tempdir('tuning')
        mert_wd = os.path.join(working_dir, 'mert')

        try:
            # Tokenization
            tokenizer = Tokenizer(target_lang)
            tokenized_output = os.path.join(working_dir, 'reference_corpora')
            fileutils.makedirs(tokenized_output, exist_ok=True)

            with cmdlogger.step('Corpora tokenization') as _:
                reference_corpora = tokenizer.process_corpora(
                    reference_corpora, tokenized_output)

            # Create merged corpus
            with cmdlogger.step('Merging corpus') as _:
                # source
                source_merged_corpus = os.path.join(working_dir,
                                                    'corpus.' + source_lang)

                with open(source_merged_corpus, 'wb') as out:
                    for corpus in source_corpora:
                        out.write(corpus.get_file(source_lang) + '\n')

                # target
                target_merged_corpus = os.path.join(working_dir,
                                                    'corpus.' + target_lang)
                fileutils.merge([
                    corpus.get_file(target_lang)
                    for corpus in reference_corpora
                ], target_merged_corpus)

            # Run MERT algorithm
            with cmdlogger.step('Tuning') as _:
                # Start MERT
                decoder_flags = ['--port', str(self.api.port)]

                if self.api.root is not None:
                    decoder_flags += ['--root', self.api.root]

                if not context_enabled:
                    decoder_flags.append('--skip-context-analysis')
                    decoder_flags.append('1')

                fileutils.makedirs(mert_wd, exist_ok=True)

                with tempfile.NamedTemporaryFile() as runtime_moses_ini:
                    command = [
                        self._mert_script, source_merged_corpus,
                        target_merged_corpus, self._mert_i_script,
                        runtime_moses_ini.name, '--threads',
                        str(multiprocessing.cpu_count()), '--mertdir',
                        cli.BIN_DIR, '--mertargs',
                        '\'--binary --sctype BLEU\'', '--working-dir', mert_wd,
                        '--nbest', '100', '--decoder-flags',
                        '"' + ' '.join(decoder_flags) + '"', '--nonorm',
                        '--closest', '--no-filter-phrase-table'
                    ]

                    if early_stopping_value is not None:
                        command += [
                            '--bleuscorer', self._scorer_script,
                            '--bleuscorer-flags "-nt" --early-stopping-value %d'
                            % early_stopping_value
                        ]

                    if not random_seeds:
                        command.append('--predictable-seeds')
                    if max_iterations > 0:
                        command.append('--maximum-iterations={num}'.format(
                            num=max_iterations))

                    with open(self.engine.get_logfile('mert'), 'wb') as log:
                        shell.execute(' '.join(command),
                                      stdout=log,
                                      stderr=log)

            # Read optimized configuration
            with cmdlogger.step('Applying changes') as _:
                bleu_score = 0
                weights = {}
                found_weights = False

                with open(os.path.join(mert_wd, 'moses.ini')) as moses_ini:
                    for line in moses_ini:
                        line = line.strip()

                        if len(line) == 0:
                            continue
                        elif found_weights:
                            tokens = line.split()
                            weights[tokens[0].rstrip('=')] = [
                                float(val) for val in tokens[1:]
                            ]
                        elif line.startswith('# BLEU'):
                            bleu_score = float(line.split()[2])
                        elif line == '[weight]':
                            found_weights = True

                _ = self.api.update_features(weights)

            cmdlogger.completed(bleu_score)
        finally:
            if not debug:
                self.engine.clear_tempdir("tuning")
Example #10
0
    def evaluate(self, corpora, heval_output=None, debug=False):
        target_lang = self._engine.target_lang
        source_lang = self._engine.source_lang

        corpora = [corpus for corpus in corpora if source_lang in corpus.langs and target_lang in corpus.langs]
        if len(corpora) == 0:
            raise IllegalArgumentException('No %s > %s corpora found into specified path' % (source_lang, target_lang))

        if heval_output is not None:
            fileutils.makedirs(heval_output, exist_ok=True)

        logger = _evaluate_logger()
        logger.start(corpora)

        working_dir = self._engine.get_tempdir('evaluation')

        try:
            results = []

            # Process references
            with logger.step('Preparing corpora') as _:
                corpora_path = os.path.join(working_dir, 'corpora')
                corpora = self._xmlencoder.encode(corpora, corpora_path)

                reference = os.path.join(working_dir, 'reference.' + target_lang)
                source = os.path.join(working_dir, 'source.' + source_lang)
                fileutils.merge([corpus.get_file(target_lang) for corpus in corpora], reference)
                fileutils.merge([corpus.get_file(source_lang) for corpus in corpora], source)

                if heval_output is not None:
                    self._heval_outputter.write(lang=target_lang, input_file=reference,
                                                output_file=os.path.join(heval_output, 'reference.' + target_lang))
                    self._heval_outputter.write(lang=source_lang, input_file=source,
                                                output_file=os.path.join(heval_output, 'source.' + source_lang))

            # Translate
            for translator in self._translators:
                name = translator.name()

                with logger.step('Translating with %s' % name) as _:
                    result = _EvaluationResult(translator)
                    results.append(result)

                    translations_path = os.path.join(working_dir, 'translations', result.id + '.raw')
                    xmltranslations_path = os.path.join(working_dir, 'translations', result.id)
                    fileutils.makedirs(translations_path, exist_ok=True)

                    try:
                        translated, mtt, parallelism = translator.translate(corpora, translations_path)
                        filename = result.id + '.' + target_lang

                        result.mtt = mtt
                        result.parallelism = parallelism
                        result.translated_corpora = self._xmlencoder.encode(translated, xmltranslations_path)
                        result.merge = os.path.join(working_dir, filename)

                        fileutils.merge([corpus.get_file(target_lang)
                                         for corpus in result.translated_corpora], result.merge)

                        if heval_output is not None:
                            self._heval_outputter.write(lang=target_lang, input_file=result.merge,
                                                        output_file=os.path.join(heval_output, filename))
                    except TranslateError as e:
                        result.error = e
                    except Exception as e:
                        result.error = TranslateError('Unexpected ERROR: ' + str(e.message))

            # Check corpora length
            reference_lines = fileutils.linecount(reference)
            for result in results:
                if result.error is not None:
                    continue

                lines = fileutils.linecount(result.merge)

                if lines != reference_lines:
                    raise TranslateError('Invalid line count for translator %s: expected %d, found %d.'
                                         % (result.translator.name(), reference_lines, lines))

            # Scoring
            scorers = [(MatecatScore(), 'pes'), (BLEUScore(), 'bleu')]

            for scorer, field in scorers:
                with logger.step('Calculating %s' % scorer.name()) as _:
                    for result in results:
                        if result.error is not None:
                            continue
                        setattr(result, field, scorer.calculate(result.merge, reference))

            logger.completed(results, scorers)

            return results
        finally:
            if not debug:
                self._engine.clear_tempdir('evaluation')
Example #11
0
    def evaluate(self, corpora, heval_output=None, debug=False):
        if len(corpora) == 0:
            raise IllegalArgumentException('empty corpora')
        if heval_output is not None:
            fileutils.makedirs(heval_output, exist_ok=True)

        target_lang = self._engine.target_lang
        source_lang = self._engine.source_lang

        logger = _evaluate_logger()
        logger.start(corpora)

        working_dir = self._engine.get_tempdir('evaluation')

        try:
            results = []

            # Process references
            with logger.step('Preparing corpora') as _:
                corpora_path = os.path.join(working_dir, 'corpora')
                corpora = self._xmlencoder.encode(corpora, corpora_path)

                reference = os.path.join(working_dir, 'reference.' + target_lang)
                source = os.path.join(working_dir, 'source.' + source_lang)
                fileutils.merge([corpus.get_file(target_lang) for corpus in corpora], reference)
                fileutils.merge([corpus.get_file(source_lang) for corpus in corpora], source)

                if heval_output is not None:
                    self._heval_outputter.write(lang=target_lang, input_file=reference,
                                                output_file=os.path.join(heval_output, 'reference.' + target_lang))
                    self._heval_outputter.write(lang=source_lang, input_file=source,
                                                output_file=os.path.join(heval_output, 'source.' + source_lang))

            # Translate
            for translator in self._translators:
                name = translator.name()

                with logger.step('Translating with %s' % name) as _:
                    result = _EvaluationResult(translator)
                    results.append(result)

                    translations_path = os.path.join(working_dir, 'translations', result.id + '.raw')
                    xmltranslations_path = os.path.join(working_dir, 'translations', result.id)
                    fileutils.makedirs(translations_path, exist_ok=True)

                    try:
                        translated, mtt, parallelism = translator.translate(corpora, translations_path)
                        filename = result.id + '.' + target_lang

                        result.mtt = mtt
                        result.parallelism = parallelism
                        result.translated_corpora = self._xmlencoder.encode(translated, xmltranslations_path)
                        result.merge = os.path.join(working_dir, filename)

                        fileutils.merge([corpus.get_file(target_lang)
                                         for corpus in result.translated_corpora], result.merge)

                        if heval_output is not None:
                            self._heval_outputter.write(lang=target_lang, input_file=result.merge,
                                                        output_file=os.path.join(heval_output, filename))
                    except TranslateError as e:
                        result.error = e
                    except Exception as e:
                        result.error = TranslateError('Unexpected ERROR: ' + str(e.message))

            # Check corpora length
            reference_lines = fileutils.linecount(reference)
            for result in results:
                if result.error is not None:
                    continue
                    
                lines = fileutils.linecount(result.merge)

                if lines != reference_lines:
                    raise TranslateError('Invalid line count for translator %s: expected %d, found %d.'
                                         % (result.translator.name(), reference_lines, lines))

            # Scoring
            scorers = [(MatecatScore(), 'pes'), (BLEUScore(), 'bleu')]

            for scorer, field in scorers:
                with logger.step('Calculating %s' % scorer.name()) as _:
                    for result in results:
                        if result.error is not None:
                            continue
                        setattr(result, field, scorer.calculate(result.merge, reference))

            logger.completed(results, scorers)

            return results
        finally:
            if not debug:
                self._engine.clear_tempdir('evaluation')
Example #12
0
    def tune(self, corpora=None, debug=False, context_enabled=True, random_seeds=False, max_iterations=25):
        if corpora is None:
            corpora = BilingualCorpus.list(os.path.join(self.engine.data_path, TrainingPreprocessor.DEV_FOLDER_NAME))

        if len(corpora) == 0:
            raise IllegalArgumentException('empty corpora')

        if not self.is_running():
            raise IllegalStateException('No MMT Server running, start the engine first')

        tokenizer = Tokenizer()

        target_lang = self.engine.target_lang
        source_lang = self.engine.source_lang

        source_corpora = [BilingualCorpus.make_parallel(corpus.name, corpus.get_folder(), [source_lang])
                          for corpus in corpora]
        reference_corpora = [BilingualCorpus.make_parallel(corpus.name, corpus.get_folder(), [target_lang])
                             for corpus in corpora]

        cmdlogger = _tuning_logger(4)
        cmdlogger.start(self, corpora)

        working_dir = self.engine.get_tempdir('tuning')
        mert_wd = os.path.join(working_dir, 'mert')

        try:
            # Tokenization
            tokenized_output = os.path.join(working_dir, 'reference_corpora')
            fileutils.makedirs(tokenized_output, exist_ok=True)

            with cmdlogger.step('Corpora tokenization') as _:
                reference_corpora = tokenizer.process_corpora(reference_corpora, tokenized_output)

            # Create merged corpus
            with cmdlogger.step('Merging corpus') as _:
                # source
                source_merged_corpus = os.path.join(working_dir, 'corpus.' + source_lang)

                with open(source_merged_corpus, 'wb') as out:
                    for corpus in source_corpora:
                        out.write(corpus.get_file(source_lang) + '\n')

                # target
                target_merged_corpus = os.path.join(working_dir, 'corpus.' + target_lang)
                fileutils.merge([corpus.get_file(target_lang) for corpus in reference_corpora], target_merged_corpus)

            # Run MERT algorithm
            with cmdlogger.step('Tuning') as _:
                # Start MERT
                decoder_flags = ['--port', str(self.api.port)]

                if not context_enabled:
                    decoder_flags.append('--skip-context-analysis')
                    decoder_flags.append('1')

                fileutils.makedirs(mert_wd, exist_ok=True)

                with tempfile.NamedTemporaryFile() as runtime_moses_ini:
                    command = [self._mert_script, source_merged_corpus, target_merged_corpus,
                               self._mert_i_script, runtime_moses_ini.name, '--threads',
                               str(multiprocessing.cpu_count()), '--mertdir', cli.BIN_DIR,
                               '--mertargs', '\'--binary --sctype BLEU\'', '--working-dir', mert_wd, '--nbest', '100',
                               '--decoder-flags', '"' + ' '.join(decoder_flags) + '"', '--nonorm', '--closest',
                               '--no-filter-phrase-table']

                    if not random_seeds:
                        command.append('--predictable-seeds')
                    if max_iterations > 0:
                        command.append('--maximum-iterations={num}'.format(num=max_iterations))

                    with open(self.engine.get_logfile('mert'), 'wb') as log:
                        shell.execute(' '.join(command), stdout=log, stderr=log)

            # Read optimized configuration
            with cmdlogger.step('Applying changes') as _:
                bleu_score = 0
                weights = {}
                found_weights = False

                with open(os.path.join(mert_wd, 'moses.ini')) as moses_ini:
                    for line in moses_ini:
                        line = line.strip()

                        if len(line) == 0:
                            continue
                        elif found_weights:
                            tokens = line.split()
                            weights[tokens[0].rstrip('=')] = [float(val) for val in tokens[1:]]
                        elif line.startswith('# BLEU'):
                            bleu_score = float(line.split()[2])
                        elif line == '[weight]':
                            found_weights = True

                _ = self.api.update_features(weights)

            cmdlogger.completed(bleu_score)
        finally:
            if not debug:
                self.engine.clear_tempdir()
Example #13
0
    def translate(self, corpora, dest_path=None, debug=False):
        if len(corpora) == 0:
            raise IllegalArgumentException('empty corpora')

        if dest_path:
            fileutils.makedirs(dest_path, exist_ok=True)

        target_lang = self._engine.target_lang
        source_lang = self._engine.source_lang

        working_dir = self._engine.get_tempdir('evaluation')
        have_references = False

        try:
            results = []

            # Process references
            corpora_path = os.path.join(working_dir, 'corpora')
            corpora = self._xmlencoder.encode(corpora, corpora_path)

            reference = os.path.join(working_dir, 'reference.' + target_lang)
            source = os.path.join(working_dir, 'source.' + source_lang)
            refs = [corpus.get_file(target_lang) for corpus in corpora if corpus.get_file(target_lang)]
            have_references = len(refs) > 0
            fileutils.merge(refs, reference)  # tolerates missing reference
            fileutils.merge([corpus.get_file(source_lang) for corpus in corpora], source)

            if dest_path:
                for corpus in corpora:
                    corpus.copy(dest_path, suffixes={source_lang: '.src', target_lang: '.ref', 'tmx': '.src'})

            # Translate
            translator = self._translator
            name = translator.name()

            result = _EvaluationResult(translator)
            results.append(result)

            translations_path = os.path.join(working_dir, 'translations', result.id + '.raw')
            xmltranslations_path = os.path.join(working_dir, 'translations', result.id)
            fileutils.makedirs(translations_path, exist_ok=True)

            try:
                translated, mtt, parallelism = translator.translate(corpora, translations_path)
                filename = result.id + '.' + target_lang

                result.mtt = mtt
                result.parallelism = parallelism
                result.translated_corpora = self._xmlencoder.encode(translated, xmltranslations_path)
                result.merge = os.path.join(working_dir, filename)

                fileutils.merge([corpus.get_file(target_lang)
                                 for corpus in result.translated_corpora], result.merge)

                if dest_path:
                    for corpus in result.translated_corpora:
                        corpus.copy(dest_path, suffixes={target_lang: '.hyp', 'tmx': '.hyp'})

            except TranslateError as e:
                result.error = e
            except Exception as e:
                result.error = TranslateError('Unexpected ERROR: ' + str(e.message))

            if result.error is None:
                if have_references:
                    scorer = BLEUScore()
                    # bleu in range [0;1)
                    bleu = scorer.calculate(result.merge, reference)
                    return bleu
                else:
                    return True
            else:
                print(result.error)
                return None
        finally:
            if not debug:
                self._engine.clear_tempdir('evaluation')