Example #1
0
def fit_validate(exp_params, k, data_path, write_path, others=None, custom_tag=''):
    """Fit model and compute metrics on train and validation set. Intended for hyperparameter search.

    Only logs final metrics and scatter plot of final embedding.

    Args:
        exp_params(dict): Parameter dict. Should at least have keys model_name, dataset_name & random_state. Other
        keys are assumed to be model parameters.
        k(int): Fold identifier.
        data_path(str): Data directory.
        write_path(str): Where to write temp files.
        others(dict): Other things to log to Comet experiment.
        custom_tag(str): Custom tag for comet experiment.

    """
    # Comet experiment
    exp = Experiment(parse_args=False)
    exp.disable_mp()
    custom_tag += '_validate'
    exp.add_tag(custom_tag)
    exp.log_parameters(exp_params)

    if others is not None:
        exp.log_others(others)

    # Parse experiment parameters
    model_name, dataset_name, random_state, model_params = parse_params(exp_params)

    # Fetch and split dataset.
    data_train = getattr(grae.data, dataset_name)(split='train', random_state=random_state, data_path=data_path)
    data_train, data_val = data_train.validation_split(random_state=FOLD_SEEDS[k])

    # Model
    m = getattr(grae.models, model_name)(random_state=FOLD_SEEDS[k], **model_params)
    m.write_path = write_path
    m.data_val = data_val

    with exp.train():
        m.fit(data_train)

        # Log plot
        m.comet_exp = exp
        m.plot(data_train, data_val, title=f'{model_name} : {dataset_name}')

        # Probe embedding
        prober = EmbeddingProber()
        prober.fit(model=m, dataset=data_train, mse_only=True)
        train_z, train_metrics = prober.score(data_train, is_train=True)

        # Log train metrics
        exp.log_metrics(train_metrics)

    with exp.validate():
        val_z, val_metrics = prober.score(data_val)

        # Log train metrics
        exp.log_metrics(val_metrics)

    # Log marker to mark successful experiment
    exp.log_other('success', 1)
Example #2
0
 def __init__(self, config_file, tag_list):
     self.tag_list = tag_list
     super().__init__()
     with open(config_file, 'r') as f:
         comet_config = json.load(f)
     comet_exp = Experiment(**comet_config)
     for tag in tag_list:
         comet_exp.add_tag(tag)
     self.exp = comet_exp
Example #3
0
def main():
    device = 'cuda' if torch.cuda.is_available() else 'cpu'

    generator = Generator(n_res_blocks=16, n_ps_blocks=2)

    hst_path = "../data/samples/hst/filtered_restricted"
    hsc_path = "../data/samples/hsc/filtered_restricted"

    api_key = os.environ['COMET_ML_ASTRO_API_KEY']
    # Create an experiment with your api key

    experiment = Experiment(
        api_key=api_key,
        project_name="Super Resolution GAN: HSC->HST",
        workspace="samkahn-astro",
    )

    experiment.add_tag("test tag")

    dataloader = torch.utils.data.DataLoader(SR_HST_HSC_Dataset(
        hst_path=hst_path,
        hsc_path=hsc_path,
        hr_size=[600, 600],
        lr_size=[100, 100],
        transform_type="log_scale"),
                                             batch_size=1,
                                             pin_memory=True,
                                             shuffle=True,
                                             collate_fn=collate_fn)

    generator = train_srresnet(generator,
                               dataloader,
                               device,
                               experiment,
                               lr=1e-4,
                               total_steps=1e5,
                               display_step=50)

    torch.save(generator, 'srresnet_median_scale.pt')

    generator = torch.load('srresnet_median_scale.pt')
    discriminator = Discriminator(n_blocks=1, base_channels=8)

    generator, discriminator = train_srgan(generator,
                                           discriminator,
                                           dataloader,
                                           device,
                                           experiment,
                                           lr=1e-4,
                                           total_steps=1e5,
                                           display_step=1000)

    torch.save(generator, 'srresnet_median_scale.pt')
    torch.save(discriminator, 'srdiscriminator_median_scale.pt')
Example #4
0
def start_comet(args):
    exp = None
    if args.comet is not None and len(args.comet) > 0:
        workspace, project, apikey = args.comet.split("/")
        exp = Experiment(api_key=apikey,
                         project_name=project,
                         workspace=workspace)
        exp.set_name("td3")
        if len(args.comet_tags) > 0:
            comet_tags = args.comet_tags.split(",")
            for tag in comet_tags:
                exp.add_tag(tag)
    return exp
    def run(loss, lr, loss_a1, loss_a2):
        exp = Experiment(workspace="pose-refinement",
                         project_name="02-batch-shuffle-pretrained")
        exp.add_tag("no bad frames")

        if args.output is None:
            output_path = f"../models/{exp.get_key()}"
        else:
            output_path = args.output

        params = {
            "num_epochs": 15,
            "preprocess_2d": "DepthposeNormalize2D",
            "preprocess_3d": "SplitToRelativeAbsAndMeanNormalize3D",
            "shuffle": True,
            "ordered_batch": True,
            # training
            "optimiser": "adam",
            "adam_amsgrad": True,
            "learning_rate": lr,
            "sgd_momentum": 0,
            "batch_size": 1024,
            "train_time_flip": False,  # True,
            "test_time_flip": True,
            "lr_scheduler": {
                "type": "multiplicative",
                "multiplier": 0.95,
                "step_size": 1,
            },
            # dataset
            "train_data": "mpii+muco",
            "pose2d_type": "hrnet",
            "pose3d_scaling": "normal",
            "megadepth_type": "megadepth_at_hrnet",
            "cap_25fps": True,
            "stride": 2,
            "simple_aug":
            False,  # True,  # augments data by duplicating each frame
            "weights": "29cbfa0fc1774b9cbb06a3573b7fb711",
            "model": {
                "loss": loss,
                "loss_a1": loss_a1,
                "loss_a2": loss_a2
            },
        }
        run_experiment(output_path, params, exp)
        eval.main(output_path, False, exp)
def main(cfg):
    shapes = cfg.model.shapes
    opt_params = cfg.optimizer.params

    experiment = Experiment(log_code=False)
    experiment.set_code(filename=hydra.utils.to_absolute_path(__file__))
    experiment.add_tag("with_hydra")
    experiment.log_parameters({"hydra-cfg": [cfg]})
    model = layers.MLP(shapes)
    optimizer = optim.Adam(model.parameters(), **opt_params)
    runner = tasks.ClassificationRunner(
        model,
        optimizer=optimizer,
        criterion=nn.CrossEntropyLoss(),
        experiment=experiment
    )
    runner.fit(x, y, epochs=10, checkpoint_path="./checkpoints")
    runner.save()
Example #7
0
def setup_comet(args, init_distributed):
    if init_distributed and args.distributed_rank>0: # Only the rank 0 process handled comet
        args.comet = False
    if args.comet:      # This will only be true if the user set the --comet flag, and the rank is 0
        print('Activating comet')
        experiment = Experiment(api_key=api_key,
                                project_name=args.comet_project, workspace=workspace,
                                auto_param_logging=False, auto_metric_logging=False,
                                parse_args=True, auto_output_logging=True, log_env_gpu=False
                                )
        # experiment.disable_mp() # Turn off monkey patching
        experiment.log_parameters(vars(args))
        # experiment.add_tag(args.comet_tag)
        experiment.set_name(args.comet_tag)
        experiment.add_tag(args.comet_real_tag)

        print("* Finished comet setup... ")
        return experiment
    else:
        return None
Example #8
0
def log_hyperparameters_to_comet(clf, experiment):
    for i in range(len(clf.cv_results_["params"])):
        exp = Experiment(
            workspace="s0lvang",
            project_name="ideal-pancake-hyperparameter",
            api_key=globals.flags.comet_api_key,
        )
        exp.add_tag("hp_tuning")
        exp.add_tags(globals.comet_logger.get_tags())
        for k, v in clf.cv_results_.items():
            if k == "params":
                exp.log_parameters(v[i])
            else:
                exp.log_metric(k, v[i])
        exp.end()

    old_experiment = ExistingExperiment(
        api_key=globals.flags.comet_api_key,
        previous_experiment=experiment.get_key(),
    )
    globals.comet_logger = old_experiment
Example #9
0
    def test_comet(self):
        """Test with a comet hook."""
        from comet_ml import Experiment
        comet = Experiment(project_name="Testing",
                           auto_output_logging="native")
        comet.log_dataset_info(name="Karcher", path="shonan")
        comet.add_tag("GaussNewton")
        comet.log_parameter("method", "GaussNewton")
        time = datetime.now()
        comet.set_name("GaussNewton-" + str(time.month) + "/" + str(time.day) +
                       " " + str(time.hour) + ":" + str(time.minute) + ":" +
                       str(time.second))

        # I want to do some comet thing here
        def hook(optimizer, error):
            comet.log_metric("Karcher error", error, optimizer.iterations())

        gtsam_optimize(self.optimizer, self.params, hook)
        comet.end()

        actual = self.optimizer.values()
        self.gtsamAssertEquals(actual.atRot3(KEY), self.expected)
Example #10
0
def train_nn(
    dataset: str, batch_size: int, depth: int, epochs: int
) -> Tuple[CNN, Tuple[Union[np.ndarray, np.ndarray], Union[
        np.ndarray, np.ndarray]], Tuple[Union[np.ndarray, np.ndarray], Union[
            np.ndarray, np.ndarray]]]:
    experiment = Experiment(project_name="cphap", auto_output_logging=False)
    experiment.add_tag(dataset)
    experiment.add_tag("NN-depth-{}".format(depth))
    (x_train, y_train), (x_test, y_test) = fetch_dataset(dataset)
    scaler = TimeSeriesScalerMeanVariance()
    x_train: np.ndarray = scaler.fit_transform(x_train)
    x_test: np.ndarray = scaler.transform(x_test)

    x_train = x_train.transpose((0, 2, 1)).astype(np.float32)
    x_test = x_test.transpose((0, 2, 1)).astype(np.float32)

    n_features = x_train.shape[1]
    n_targets = len(np.unique(y_train))

    train_ds = get_dataset(x_train, y_train)
    test_ds = get_dataset(x_test, y_test)

    train_loader = DataLoader(train_ds, batch_size=batch_size, shuffle=True)
    test_loader = DataLoader(test_ds, batch_size=batch_size, shuffle=False)

    model = CNN(n_features, 32, n_targets, depth=depth)
    optimizer = optim.Adam(model.parameters())
    criterion = nn.CrossEntropyLoss()

    runner = ClassificationRunner(model, optimizer, criterion, experiment)
    runner.add_loader("train", train_loader)
    runner.add_loader("test", test_loader)
    runner.train_config(epochs=epochs)
    runner.run()
    runner.quite()

    return runner.model.eval(), (x_train, x_test), (y_train, y_test)
Example #11
0
if args.Xaugment: args.augment = True
if args.Xbatchsize: args.batchsize = 250
if args.Xlrnrate: args.lrnrate = .2
if args.Xoptimizer: args.optimizer = 'sgd'
if args.Xnet:
    args.net = 'ConvNet'
    args.lrnrate = .05
print(args)
if rank == 0:
    experiment = Experiment(project_name='metapoison-victim',
                            auto_param_logging=False,
                            auto_metric_logging=False)
    experiment.log_parameters(vars(args))
    experiment.log_parameter('nmeta', nmeta)
    experiment.set_name(args.key)
    experiment.add_tag(args.tag)

    experiment.log_model("CIFAR10", "../models/victim_model_1_run")
# args.gpu = set_available_gpus(args)
# again, hardcode the number of the GPU to avoid the error
args.gpu = [1]
if args.name == '': args.name = args.net


def victim():
    def comet_pull_next_poison():
        # grab next poison from comet that hasn't been processed
        impatience = 0
        # while not has_exitflag(args.key, api) or impatience < 5:  # patience before ending victim process
        # Get rid off has_exitflag condition and also only keep the impagtience condition
        while impatience < 5:  # patience before ending victim process
Example #12
0
if hparams['cometml_log_audio']:
    audio_loggers = {
        'enhancement':
        cometml_audio_logger.AudioLogger(fs=hparams["fs"],
                                         bs=1,
                                         n_sources=hparams['max_num_sources'])
    }

experiment = Experiment(API_KEY, project_name=hparams['project_name'])
experiment.log_parameters(hparams)
experiment_name = '_'.join(hparams['cometml_tags'])
log_dir = os.path.join(FED_LOG_DIR, experiment_name)
if not os.path.exists(log_dir):
    os.makedirs(log_dir)
for tag in hparams['cometml_tags']:
    experiment.add_tag(tag)
if hparams['experiment_name'] is not None:
    experiment.set_name(hparams['experiment_name'])
else:
    experiment.set_name(experiment_name)

os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(
    [cad for cad in hparams['cuda_available_devices']])

val_losses = {}
all_losses = []
for val_set in [x for x in val_generators if not x == 'train']:
    val_losses[val_set] = {}
    for num_noises in [1, 2]:
        metric_name = 'SISDRi_enhancement_{}_noises'.format(num_noises)
        all_losses.append(val_set + '_{}'.format(metric_name))
Example #13
0
def train(normal_digit, anomalies, folder, file, p_train, p_test):

    # Create an experiment
    experiment = Experiment(project_name="deep-stats-thesis",
                            workspace="stecaron",
                            disabled=True)
    experiment.add_tag("mnist_kpca")

    # General parameters
    DOWNLOAD_MNIST = True
    PATH_DATA = os.path.join(os.path.expanduser("~"), 'Downloads/mnist')

    # Define training parameters
    hyper_params = {
        "TRAIN_SIZE": 2000,
        "TRAIN_NOISE": p_train,
        "TEST_SIZE": 800,
        "TEST_NOISE": p_test,
        # on which class we want to learn outliers
        "CLASS_SELECTED": [normal_digit],
        # which class we want to corrupt our dataset with
        "CLASS_CORRUPTED": anomalies,
        "INPUT_DIM": 28 * 28,  # In the case of MNIST
        "ALPHA": p_test,  # level of significance for the test
        # hyperparameters gamma in rbf kPCA
        "GAMMA": [1],
        "N_COMP": [30]
    }

    # Log experiment parameterso0p
    experiment.log_parameters(hyper_params)

    # Load data
    train_data, test_data = load_mnist(PATH_DATA, download=DOWNLOAD_MNIST)

    # Normalize data
    train_data.data = train_data.data / 255.
    test_data.data = test_data.data / 255.

    # Build "train" and "test" datasets
    id_maj_train = numpy.random.choice(numpy.where(
        numpy.isin(train_data.train_labels,
                   hyper_params["CLASS_SELECTED"]))[0],
                                       int((1 - hyper_params["TRAIN_NOISE"]) *
                                           hyper_params["TRAIN_SIZE"]),
                                       replace=False)
    id_min_train = numpy.random.choice(numpy.where(
        numpy.isin(train_data.train_labels,
                   hyper_params["CLASS_CORRUPTED"]))[0],
                                       int(hyper_params["TRAIN_NOISE"] *
                                           hyper_params["TRAIN_SIZE"]),
                                       replace=False)
    id_train = numpy.concatenate((id_maj_train, id_min_train))

    id_maj_test = numpy.random.choice(numpy.where(
        numpy.isin(test_data.test_labels, hyper_params["CLASS_SELECTED"]))[0],
                                      int((1 - hyper_params["TEST_NOISE"]) *
                                          hyper_params["TEST_SIZE"]),
                                      replace=False)
    id_min_test = numpy.random.choice(numpy.where(
        numpy.isin(test_data.test_labels, hyper_params["CLASS_CORRUPTED"]))[0],
                                      int(hyper_params["TEST_NOISE"] *
                                          hyper_params["TEST_SIZE"]),
                                      replace=False)
    id_test = numpy.concatenate((id_min_test, id_maj_test))

    train_data.data = train_data.data[id_train]
    train_data.targets = train_data.targets[id_train]

    test_data.data = test_data.data[id_test]
    test_data.targets = test_data.targets[id_test]

    train_data.targets = numpy.isin(train_data.train_labels,
                                    hyper_params["CLASS_CORRUPTED"])
    test_data.targets = numpy.isin(test_data.test_labels,
                                   hyper_params["CLASS_CORRUPTED"])

    # Flatten the data and transform to numpy array
    train_data.data = train_data.data.view(-1, 28 * 28).numpy()
    test_data.data = test_data.data.view(-1, 28 * 28).numpy()

    # Train kPCA
    # param_grid = [{"gamma": hyper_params["GAMMA"],
    #                "n_components": hyper_params["N_COMP"]}]

    param_grid = [{"n_components": hyper_params["N_COMP"]}]

    # kpca = KernelPCA(fit_inverse_transform=True,
    #                  kernel="rbf",
    #                  remove_zero_eig=True,
    #                  n_jobs=-1)

    kpca = PCA()

    #my_scorer2 = make_scorer(my_scorer, greater_is_better=True)
    # grid_search = GridSearchCV(kpca, param_grid, cv=ShuffleSplit(
    #     n_splits=3), scoring=my_scorer)
    kpca.fit(train_data.data)
    X_kpca = kpca.transform(train_data.data)
    X_train_back = kpca.inverse_transform(X_kpca)
    X_test_back = kpca.inverse_transform(kpca.transform(test_data.data))

    # Compute the distance between original data and reconstruction
    dist_train = numpy.linalg.norm(train_data.data - X_train_back,
                                   ord=2,
                                   axis=1)
    dist_test = numpy.linalg.norm(test_data.data - X_test_back, ord=2, axis=1)

    # Test performances on train
    train_anomalies_ind = numpy.argsort(dist_train)[int(
        (1 - hyper_params["ALPHA"]) *
        hyper_params["TRAIN_SIZE"]):int(hyper_params["TRAIN_SIZE"])]
    train_predictions = numpy.zeros(hyper_params["TRAIN_SIZE"])
    train_predictions[train_anomalies_ind] = 1

    train_recall = metrics.recall_score(train_data.targets, train_predictions)
    train_precision = metrics.precision_score(train_data.targets,
                                              train_predictions)
    train_f1_score = metrics.f1_score(train_data.targets, train_predictions)
    train_auc = metrics.roc_auc_score(train_data.targets, train_predictions)

    print(f"Train Precision: {train_precision}")
    print(f"Train Recall: {train_recall}")
    print(f"Train F1 Score: {train_f1_score}")
    print(f"Train AUC: {train_auc}")
    experiment.log_metric("train_precision", train_precision)
    experiment.log_metric("train_recall", train_recall)
    experiment.log_metric("train_f1_score", train_f1_score)
    experiment.log_metric("train_auc", train_auc)

    # Test performances on test
    test_probs = numpy.array(
        [numpy.sum(xi >= dist_train) / len(dist_train) for xi in dist_test],
        dtype=float)
    test_anomalies_ind = numpy.argwhere(
        test_probs >= 1 - hyper_params["ALPHA"])
    test_predictions = numpy.zeros(hyper_params["TEST_SIZE"])
    test_predictions[test_anomalies_ind] = 1

    test_recall = metrics.recall_score(test_data.targets, test_predictions)
    test_precision = metrics.precision_score(test_data.targets,
                                             test_predictions)
    test_f1_score = metrics.f1_score(test_data.targets, test_predictions)
    test_auc = metrics.roc_auc_score(test_data.targets, test_probs)
    test_average_precision = metrics.average_precision_score(
        test_data.targets, test_predictions)

    print(f"Test Precision: {test_precision}")
    print(f"Test Recall: {test_recall}")
    print(f"Test F1 Score: {test_f1_score}")
    print(f"Test AUC: {test_auc}")
    print(f"Test average Precision: {test_average_precision}")
    experiment.log_metric("test_precision", test_precision)
    experiment.log_metric("test_recall", test_recall)
    experiment.log_metric("test_f1_score", test_f1_score)
    experiment.log_metric("test_auc", test_auc)
    experiment.log_metric("test_average_precision", test_average_precision)

    # Save the results in the output file
    col_names = [
        "timestamp", "precision", "recall", "f1_score", "average_precision",
        "auc"
    ]
    results_file = os.path.join(folder, "results_" + file + ".csv")
    if os.path.exists(results_file):
        df_results = pandas.read_csv(results_file, names=col_names, header=0)
    else:
        df_results = pandas.DataFrame(columns=col_names)

    df_results = df_results.append(pandas.DataFrame(numpy.concatenate(
        (numpy.array(
            datetime.datetime.fromtimestamp(
                time.time()).strftime('%Y-%m-%d %H:%M:%S')).reshape(1),
         test_precision.reshape(1), test_recall.reshape(1),
         test_f1_score.reshape(1), test_average_precision.reshape(1),
         test_auc.reshape(1))).reshape(1, -1),
                                                    columns=col_names),
                                   ignore_index=True)

    df_results.to_csv(results_file)
Example #14
0
            'max_steps': MAX_STEPS,
            'use_predictors': USE_PREDICTORS,
            'batch_size': BATCH_SIZE,
            'hidden_sizes': str(HIDDEN_SIZES),
            'step_size': STEP_SIZE,
            'predictor_lr': PREDICTOR_LR,
            'lr': LR,
            'epochs': EPOCHS,
            # 'max_grad_norm': MAX_GRAD_NORM,
            'solver': 'MAX_GRAD_NORM',
            'predictor_optimizer': 'SGD',
            # 'exploration_prob': EXPLORATION_PROB,
            'nonlinearity_after_predictor': True,
            'fixed_zero_grad': True,
            # 'predictor_hidden': PREDICTOR_HIDDEN,
            'stopping_criterion': 'MaxGradNormSolver',
            # 'predictor_n_opt_steps': PREDICTOR_N_OPT_STEPS
        }

        EXP = Experiment(project_name='EqProp', auto_metric_logging=False)
        EXP.add_tag('linear predictor')

        EXP.log_parameters(hparams)

        comment = f'{MAX_STEPS}_steps'
        if USE_PREDICTORS:
            comment += '_predictors'

        main()
        EXP.end()
Example #15
0
def train(config):
    print(config.n_classes)
    if config.use_quadruplet:
        assert config.use_embeddings, "Cannot use quadruplet loss without Embedding model"

    experiment = Experiment(api_key="Cbyqfs9Z8auN5ivKsbv2Z6Ogi",
                            project_name="gta-crime-classification-2",
                            workspace="beardedwhale")

    params = {
        'ft_index': config.ft_begin_index,
        'model': config.base_model,
        'model_type': config.model_type,
        'model_depth': config.model_depth,
        'finetuning_block': config.finetune_block
    }
    experiment.log_parameters(params)
    experiment.log_parameters(vars(config))
    experiment.add_tag(config.model_type)
    if config.use_quadruplet:
        experiment.add_tag('quadruplet_loss')

    model, params = generate_model(config)
    summary(model,
            input_size=(3, config.sample_duration, config.sample_size,
                        config.sample_size))
    dataset_path = config.dataset_path
    jpg_path = config.jpg_dataset_path

    config.scales = [config.initial_scale]
    for _ in range(1, config.n_scales):
        config.scales.append(config.scales[-1] * config.scale_step)
    config.arch = '{}-{}'.format(config.base_model, config.model_depth)

    config.mean = get_mean(config.norm_value, dataset=config.mean_dataset)
    config.std = get_std(config.norm_value, 'gta')  # TODO handle gta?
    with open(os.path.join(config.result_path, 'config.json'),
              'w') as opt_file:
        json.dump(vars(config), opt_file)

    if config.no_mean_norm and not config.std_norm:
        norm_method = Normalize([0, 0, 0], [1, 1, 1])
    elif not config.std_norm:
        norm_method = Normalize(config.mean, [1, 1, 1])
    else:
        norm_method = Normalize(config.mean, config.std)

    loaders: Dict[STEP, torch.utils.data.DataLoader] = {}
    loggers: Dict[STEP, Logger] = {}
    steps: [STEP] = []
    metrics = []
    if config.use_quadruplet:
        metrics.append('QUADRUPLET_LOSS')
        metrics.append('CLASSIFICATION_LOSS')

    if not config.no_train:
        assert config.train_crop in ['random', 'corner', 'center']
        if config.train_crop == 'random':
            crop_method = MultiScaleRandomCrop(config.scales,
                                               config.sample_size)
        elif config.train_crop == 'corner':
            crop_method = MultiScaleCornerCrop(config.scales,
                                               config.sample_size)
        elif config.train_crop == 'center':
            crop_method = MultiScaleCornerCrop(config.scales,
                                               config.sample_size,
                                               crop_positions=['c'])
        spatial_transform = Compose([
            crop_method,
            RandomHorizontalFlip(),
            ToTensor(config.norm_value), norm_method
        ])
        temporal_transform = TemporalRandomCrop(config.sample_duration)
        target_transform = ClassLabel()
        assert os.path.exists(dataset_path)
        training_data = GTA_crime(dataset_path,
                                  jpg_path,
                                  'train',
                                  spatial_transform=spatial_transform,
                                  temporal_transform=temporal_transform,
                                  target_transform=target_transform,
                                  sample_duration=config.sample_duration,
                                  dataset_conf_path=config.dataset_conf_path)

        train_loader = torch.utils.data.DataLoader(
            training_data,
            batch_size=config.batch_size,
            shuffle=True,
            num_workers=config.n_threads,
            pin_memory=True)

        train_logger = Logger(experiment,
                              STEP.TRAIN,
                              n_classes=config.n_finetune_classes,
                              topk=[1, 2, 3],
                              class_map=list(training_data.class_map.keys()),
                              metrics=metrics)

        loaders[STEP.TRAIN] = train_loader
        loggers[STEP.TRAIN] = train_logger
        steps.append(STEP.TRAIN)
    if not config.no_val:
        val_data = GTA_crime(dataset_path,
                             jpg_path,
                             'test',
                             spatial_transform=spatial_transform,
                             temporal_transform=temporal_transform,
                             target_transform=target_transform,
                             sample_duration=config.sample_duration,
                             dataset_conf_path=config.dataset_conf_path)
        log.info(f'Loaded validation data: {len(val_data)} samples')
        val_loader = torch.utils.data.DataLoader(val_data,
                                                 batch_size=config.batch_size,
                                                 shuffle=True,
                                                 num_workers=config.n_threads,
                                                 pin_memory=True)
        val_logger = Logger(experiment,
                            STEP.VAL,
                            n_classes=config.n_finetune_classes,
                            topk=[1, 2, 3],
                            class_map=list(val_data.class_map.keys()),
                            metrics=metrics)
        loaders[STEP.VAL] = val_loader
        loggers[STEP.VAL] = val_logger
        steps.append(STEP.VAL)

    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(lr=config.learning_rate, params=model.parameters())
    for epoch in range(config.n_epochs):
        epoch_step(epoch,
                   conf=config,
                   criterion=criterion,
                   loaders=loaders,
                   model=model,
                   loggers=loggers,
                   optimizer=optimizer)
Example #16
0
class CorefSolver():
    def __init__(self, args):
        self.args = args
        self.data_utils = data_utils(args)
        self.disable_comet = args.disable_comet
        self.model = self.make_model(
            src_vocab=self.data_utils.vocab_size,
            tgt_vocab=self.data_utils.vocab_size,
            N=args.num_layer,
            dropout=args.dropout,
            entity_encoder_type=args.entity_encoder_type)
        print(self.model)
        if self.args.train:
            self.outfile = open(self.args.logfile, 'w')
            self.model_dir = make_save_dir(args.model_dir)
            # self.logfile = os.path.join(args.logdir, args.exp_name)
            # self.log = SummaryWriter(self.logfile)
            self.w_valid_file = args.w_valid_file

    def make_model(self,
                   src_vocab,
                   tgt_vocab,
                   N=6,
                   dropout=0.1,
                   d_model=512,
                   entity_encoder_type='linear',
                   d_ff=2048,
                   h=8):

        "Helper: Construct a model from hyperparameters."
        c = copy.deepcopy
        attn = MultiHeadedAttention(h, d_model)
        attn_ner = MultiHeadedAttention(1, d_model, dropout)
        ff = PositionwiseFeedForward(d_model, d_ff, dropout)
        position = PositionalEncoding(d_model, dropout)
        embed = Embeddings(d_model, src_vocab)
        word_embed = nn.Sequential(embed, c(position))
        print('pgen', self.args.pointer_gen)

        if entity_encoder_type == 'transformer':
            # entity_encoder = nn.Sequential(embed, Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), 1))
            print('transformer')
            entity_encoder = Seq_Entity_Encoder(
                embed,
                Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), 2))
        elif entity_encoder_type == 'albert':
            albert_tokenizer = AlbertTokenizer.from_pretrained(
                'albert-base-v2')
            albert = AlbertModel.from_pretrained('albert-base-v2')
            entity_encoder = Albert_Encoder(albert, albert_tokenizer, d_model)
        elif entity_encoder_type == 'gru':
            entity_encoder = RNNEncoder(embed,
                                        'GRU',
                                        d_model,
                                        d_model,
                                        num_layers=1,
                                        dropout=0.1,
                                        bidirectional=True)
            print('gru')
        elif entity_encoder_type == 'lstm':
            entity_encoder = RNNEncoder(embed,
                                        'LSTM',
                                        d_model,
                                        d_model,
                                        num_layers=1,
                                        dropout=0.1,
                                        bidirectional=True)
            print('lstm')

        if self.args.ner_at_embedding:
            model = EncoderDecoderOrg(
                Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
                DecoderOrg(
                    DecoderLayerOrg(d_model, c(attn), c(attn), c(ff), dropout),
                    N, d_model, tgt_vocab, self.args.pointer_gen), word_embed,
                word_embed, entity_encoder)
        else:
            if self.args.ner_last:
                decoder = Decoder(
                    DecoderLayer(d_model, c(attn), c(attn), c(ff),
                                 dropout), N, d_model, tgt_vocab,
                    self.args.pointer_gen, self.args.ner_last)
            else:
                decoder = Decoder(
                    DecoderLayer_ner(d_model, c(attn), c(attn), attn_ner,
                                     c(ff), dropout, self.args.fusion), N,
                    d_model, tgt_vocab, self.args.pointer_gen,
                    self.args.ner_last)
            model = EncoderDecoder(
                Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
                decoder, word_embed, word_embed, entity_encoder)

        # This was important from their code.
        # Initialize parameters with Glorot / fan_avg.
        for p in model.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

        # levels = 3
        # num_chans = [d_model] * (args.levels)
        # k_size = 5
        # tcn = TCN(embed, d_model, num_channels, k_size, dropout=dropout)

        return model.cuda()

    def train(self):
        if not self.disable_comet:
            # logging
            hyper_params = {
                "num_layer": self.args.num_layer,
                "pointer_gen": self.args.pointer_gen,
                "ner_last": self.args.ner_last,
                "entity_encoder_type": self.args.entity_encoder_type,
                "fusion": self.args.fusion,
                "dropout": self.args.dropout,
            }
            COMET_PROJECT_NAME = 'summarization'
            COMET_WORKSPACE = 'timchen0618'

            self.exp = Experiment(
                api_key='mVpNOXSjW7eU0tENyeYiWZKsl',
                project_name=COMET_PROJECT_NAME,
                workspace=COMET_WORKSPACE,
                auto_output_logging='simple',
                auto_metric_logging=None,
                display_summary=False,
            )
            self.exp.log_parameters(hyper_params)
            self.exp.add_tags([
                '%s entity_encoder' % self.args.entity_encoder_type,
                self.args.fusion
            ])
            if self.args.ner_last:
                self.exp.add_tag('ner_last')
            if self.args.ner_at_embedding:
                self.exp.add_tag('ner_at_embedding')
            self.exp.set_name(self.args.exp_name)
            self.exp.add_tag('coreference')

        print('ner_last ', self.args.ner_last)
        print('ner_at_embedding', self.args.ner_at_embedding)
        # dataloader & optimizer
        data_yielder = self.data_utils.data_yielder(num_epoch=100)
        optim = torch.optim.Adam(self.model.parameters(),
                                 lr=1e-7,
                                 betas=(0.9, 0.998),
                                 eps=1e-8,
                                 amsgrad=True)  #get_std_opt(self.model)
        # entity_optim = torch.optim.Adam(self.entity_encoder.parameters(), lr=1e-7, betas=(0.9, 0.998), eps=1e-8, amsgrad=True)
        total_loss = []
        start = time.time()
        print('*' * 50)
        print('Start Training...')
        print('*' * 50)
        start_step = 0

        # if loading from checkpoint
        if self.args.load_model:
            state_dict = torch.load(self.args.load_model)['state_dict']
            self.model.load_state_dict(state_dict)
            print("Loading model from " + self.args.load_model + "...")
            # encoder_state_dict = torch.load(self.args.entity_encoder)['state_dict']
            # self.entity_encoder.load_state_dict(encoder_state_dict)
            # print("Loading entity_encoder from %s" + self.args.entity_encoder + "...")
            start_step = int(torch.load(self.args.load_model)['step'])
            print('Resume training from step %d ...' % start_step)

        warmup_steps = 10000
        d_model = 512
        lr = 1e-7
        for step in range(start_step, self.args.total_steps):
            self.model.train()
            batch = data_yielder.__next__()
            optim.zero_grad()
            # entity_optim.zero_grad()

            #update lr
            if step % 400 == 1:
                lr = (1 / (d_model**0.5)) * min(
                    (1 / (step / 4)**0.5), step * (1 / (warmup_steps**1.5)))
                for param_group in optim.param_groups:
                    param_group['lr'] = lr
                # for param_group in entity_optim.param_groups:
                #     param_group['lr'] = lr

            batch['src'] = batch['src'].long()
            batch['tgt'] = batch['tgt'].long()
            batch['ner'] = batch['ner'].long()
            batch['src_extended'] = batch['src_extended'].long()

            # forward the model
            if self.args.entity_encoder_type == 'albert':
                d = self.model.entity_encoder.tokenizer.batch_encode_plus(
                    batch['ner_text'],
                    return_attention_masks=True,
                    max_length=10,
                    add_special_tokens=False,
                    pad_to_max_length=True,
                    return_tensors='pt')
                ner_mask = d['attention_mask'].cuda().unsqueeze(1)
                ner = d['input_ids'].cuda()
                # print('ner', ner.size())
                # print('ner_mask', ner_mask.size())
                # print('src_mask', batch['src_mask'].size())

            if self.args.entity_encoder_type == 'gru' or self.args.entity_encoder_type == 'lstm':
                ner_feat = self.model.entity_encoder(
                    batch['ner'].transpose(0, 1), batch['cluster_len'])[1]
            elif self.args.entity_encoder_type == 'transformer':
                mask = gen_mask(batch['cluster_len'])
                ner_feat = self.model.entity_encoder(batch['ner'], mask)
            ner, ner_mask = self.data_utils.pad_ner_feature(
                ner_feat.squeeze(), batch['num_clusters'],
                batch['src'].size(0))
            # print('ner', ner.size())
            # print('ner_mask', ner_mask.size())

            if self.args.ner_at_embedding:
                out = self.model.forward(batch['src'], batch['tgt'], ner,
                                         batch['src_mask'], batch['tgt_mask'],
                                         batch['src_extended'],
                                         len(batch['oov_list']))
            else:
                out = self.model.forward(batch['src'], batch['tgt'], ner,
                                         batch['src_mask'], batch['tgt_mask'],
                                         batch['src_extended'],
                                         len(batch['oov_list']), ner_mask)
            # print out info
            pred = out.topk(1, dim=-1)[1].squeeze().detach().cpu().numpy()[0]
            gg = batch['src_extended'].long().detach().cpu().numpy()[0][:100]
            tt = batch['tgt'].long().detach().cpu().numpy()[0]
            yy = batch['y'].long().detach().cpu().numpy()[0]

            #compute loss & update
            loss = self.model.loss_compute(out, batch['y'].long())
            loss.backward()
            optim.step()
            # entity_optim.step()

            total_loss.append(loss.detach().cpu().numpy())

            # logging information
            if step % self.args.print_every_steps == 1:
                elapsed = time.time() - start
                print("Epoch Step: %d Loss: %f Time: %f lr: %6.6f" %
                      (step, np.mean(total_loss), elapsed,
                       optim.param_groups[0]['lr']))
                self.outfile.write("Epoch Step: %d Loss: %f Time: %f\n" %
                                   (step, np.mean(total_loss), elapsed))
                print(
                    'src:\n',
                    self.data_utils.id2sent(gg, False, False,
                                            batch['oov_list']))
                print(
                    'tgt:\n',
                    self.data_utils.id2sent(yy, False, False,
                                            batch['oov_list']))
                print(
                    'pred:\n',
                    self.data_utils.id2sent(pred, False, False,
                                            batch['oov_list']))
                print('oov_list:\n', batch['oov_list'])

                if ner_mask != None and not self.args.ner_at_embedding:
                    pp = self.model.greedy_decode(
                        batch['src_extended'].long()[:1], ner[:1],
                        batch['src_mask'][:1], 100, self.data_utils.bos,
                        len(batch['oov_list']), self.data_utils.vocab_size,
                        True, ner_mask[:1])
                else:
                    pp = self.model.greedy_decode(
                        batch['src_extended'].long()[:1], ner[:1],
                        batch['src_mask'][:1], 100, self.data_utils.bos,
                        len(batch['oov_list']), self.data_utils.vocab_size,
                        True)

                pp = pp.detach().cpu().numpy()
                print(
                    'pred_greedy:\n',
                    self.data_utils.id2sent(pp[0], False, False,
                                            batch['oov_list']))

                print()
                start = time.time()
                if not self.disable_comet:
                    # self.log.add_scalar('Loss/train', np.mean(total_loss), step)
                    self.exp.log_metric('Train Loss',
                                        np.mean(total_loss),
                                        step=step)
                    self.exp.log_metric('Learning Rate',
                                        optim.param_groups[0]['lr'],
                                        step=step)

                    self.exp.log_text('Src: ' + self.data_utils.id2sent(
                        gg, False, False, batch['oov_list']))
                    self.exp.log_text('Tgt:' + self.data_utils.id2sent(
                        yy, False, False, batch['oov_list']))
                    self.exp.log_text('Pred:' + self.data_utils.id2sent(
                        pred, False, False, batch['oov_list']))
                    self.exp.log_text('Pred Greedy:' + self.data_utils.id2sent(
                        pp[0], False, False, batch['oov_list']))
                    self.exp.log_text('OOV:' + ' '.join(batch['oov_list']))

                total_loss = []

            ##########################
            # validation
            ##########################
            if step % self.args.valid_every_steps == 2:
                print('*' * 50)
                print('Start Validation...')
                print('*' * 50)
                self.model.eval()
                val_yielder = self.data_utils.data_yielder(1, valid=True)
                total_loss = []
                fw = open(self.w_valid_file, 'w')
                for batch in val_yielder:
                    with torch.no_grad():
                        batch['src'] = batch['src'].long()
                        batch['tgt'] = batch['tgt'].long()
                        batch['ner'] = batch['ner'].long()
                        batch['src_extended'] = batch['src_extended'].long()

                        ### ner ######
                        if self.args.entity_encoder_type == 'albert':
                            d = self.model.entity_encoder.tokenizer.batch_encode_plus(
                                batch['ner_text'],
                                return_attention_masks=True,
                                max_length=10,
                                add_special_tokens=False,
                                pad_to_max_length=True,
                                return_tensors='pt')
                            ner_mask = d['attention_mask'].cuda().unsqueeze(1)
                            ner = d['input_ids'].cuda()

                        if self.args.entity_encoder_type == 'gru' or self.args.entity_encoder_type == 'lstm':
                            ner_feat = self.model.entity_encoder(
                                batch['ner'].transpose(0, 1),
                                batch['cluster_len'])[1]
                        elif self.args.entity_encoder_type == 'transformer':
                            mask = gen_mask(batch['cluster_len'])
                            ner_feat = self.model.entity_encoder(
                                batch['ner'], mask)
                        ner, ner_mask = self.data_utils.pad_ner_feature(
                            ner_feat.squeeze(), batch['num_clusters'],
                            batch['src'].size(0))
                        ### ner ######

                        if self.args.ner_at_embedding:
                            out = self.model.forward(batch['src'],
                                                     batch['tgt'], ner,
                                                     batch['src_mask'],
                                                     batch['tgt_mask'],
                                                     batch['src_extended'],
                                                     len(batch['oov_list']))
                        else:
                            out = self.model.forward(batch['src'],
                                                     batch['tgt'], ner,
                                                     batch['src_mask'],
                                                     batch['tgt_mask'],
                                                     batch['src_extended'],
                                                     len(batch['oov_list']),
                                                     ner_mask)
                        loss = self.model.loss_compute(out, batch['y'].long())
                        total_loss.append(loss.item())

                        if self.args.ner_at_embedding:
                            pred = self.model.greedy_decode(
                                batch['src_extended'].long(), ner,
                                batch['src_mask'], self.args.max_len,
                                self.data_utils.bos, len(batch['oov_list']),
                                self.data_utils.vocab_size)
                        else:
                            pred = self.model.greedy_decode(
                                batch['src_extended'].long(),
                                ner,
                                batch['src_mask'],
                                self.args.max_len,
                                self.data_utils.bos,
                                len(batch['oov_list']),
                                self.data_utils.vocab_size,
                                ner_mask=ner_mask)

                        for l in pred:
                            sentence = self.data_utils.id2sent(
                                l[1:], True, self.args.beam_size != 1,
                                batch['oov_list'])
                            fw.write(sentence)
                            fw.write("\n")
                fw.close()
                # files_rouge = FilesRouge()
                # scores = files_rouge.get_scores(self.w_valid_file, self.args.valid_tgt_file, avg=True)
                scores = cal_rouge_score(self.w_valid_file,
                                         self.args.valid_ref_file)
                r1_score = scores['rouge1']
                r2_score = scores['rouge2']

                print('=============================================')
                print('Validation Result -> Loss : %6.6f' %
                      (sum(total_loss) / len(total_loss)))
                print(scores)
                print('=============================================')
                self.outfile.write(
                    '=============================================\n')
                self.outfile.write('Validation Result -> Loss : %6.6f\n' %
                                   (sum(total_loss) / len(total_loss)))
                self.outfile.write(
                    '=============================================\n')
                # self.model.train()
                # self.log.add_scalar('Loss/valid', sum(total_loss)/len(total_loss), step)
                # self.log.add_scalar('Score/valid', r1_score, step)
                if not self.disable_comet:
                    self.exp.log_metric('Valid Loss',
                                        sum(total_loss) / len(total_loss),
                                        step=step)
                    self.exp.log_metric('R1 Score', r1_score, step=step)
                    self.exp.log_metric('R2 Score', r2_score, step=step)

                #Saving Checkpoint
                w_step = int(step / 10000)
                print('Saving ' + str(w_step) + 'w_model.pth!\n')
                self.outfile.write('Saving ' + str(w_step) + 'w_model.pth\n')

                model_name = str(w_step) + 'w_' + '%6.6f' % (
                    sum(total_loss) / len(total_loss)
                ) + '%2.3f_' % r1_score + '%2.3f_' % r2_score + 'model.pth'
                state = {'step': step, 'state_dict': self.model.state_dict()}
                torch.save(state, os.path.join(self.model_dir, model_name))

                # entity_encoder_name = str(w_step) + '0w_' + '%6.6f'%(sum(total_loss)/len(total_loss)) + '%2.3f_'%r1_score + 'entity_encoder.pth'
                # state = {'step': step, 'state_dict': self.entity_encoder.state_dict()}
                # torch.save(state, os.path.join(self.model_dir, entity_encoder_name))

    def test(self):
        #prepare model
        path = self.args.load_model
        # entity_encoder_path = self.args.entity_encoder
        state_dict = torch.load(path)['state_dict']
        max_len = self.args.max_len
        model = self.model
        model.load_state_dict(state_dict)

        # entity_encoder_dict = torch.load(entity_encoder_path)['state_dict']
        # self.entity_encoder.load_state_dict(entity_encoder_dict)

        pred_dir = make_save_dir(self.args.pred_dir)
        filename = self.args.filename

        #start decoding
        data_yielder = self.data_utils.data_yielder(num_epoch=1)
        total_loss = []
        start = time.time()

        #file
        f = open(os.path.join(pred_dir, filename), 'w')

        self.model.eval()

        # decode_strategy = BeamSearch(
        #             self.beam_size,
        #             batch_size=batch.batch_size,
        #             pad=self._tgt_pad_idx,
        #             bos=self._tgt_bos_idx,
        #             eos=self._tgt_eos_idx,
        #             n_best=self.n_best,
        #             global_scorer=self.global_scorer,
        #             min_length=self.min_length, max_length=self.max_length,
        #             return_attention=attn_debug or self.replace_unk,
        #             block_ngram_repeat=self.block_ngram_repeat,
        #             exclusion_tokens=self._exclusion_idxs,
        #             stepwise_penalty=self.stepwise_penalty,
        #             ratio=self.ratio)

        step = 0
        for batch in data_yielder:
            #print(batch['src'].data.size())
            step += 1
            if step % 100 == 0:
                print('%d batch processed. Time elapsed: %f min.' %
                      (step, (time.time() - start) / 60.0))
                start = time.time()

            ### ner ###
            if self.args.entity_encoder_type == 'albert':
                d = self.model.entity_encoder.tokenizer.batch_encode_plus(
                    batch['ner_text'],
                    return_attention_masks=True,
                    max_length=10,
                    add_special_tokens=False,
                    pad_to_max_length=True,
                    return_tensors='pt')
                ner_mask = d['attention_mask'].cuda().unsqueeze(1)
                ner = d['input_ids'].cuda()
            else:
                ner_mask = None
                ner = batch['ner'].long()

            with torch.no_grad():
                if self.args.beam_size == 1:
                    if self.args.ner_at_embedding:
                        out = self.model.greedy_decode(
                            batch['src_extended'].long(),
                            self.model.entity_encoder(ner),
                            batch['src_mask'], max_len, self.data_utils.bos,
                            len(batch['oov_list']), self.data_utils.vocab_size)
                    else:
                        out = self.model.greedy_decode(
                            batch['src_extended'].long(),
                            self.model.entity_encoder(ner),
                            batch['src_mask'],
                            max_len,
                            self.data_utils.bos,
                            len(batch['oov_list']),
                            self.data_utils.vocab_size,
                            ner_mask=ner_mask)
                else:
                    ret = self.beam_decode(batch, max_len,
                                           len(batch['oov_list']))
                    out = ret['predictions']
            for l in out:
                sentence = self.data_utils.id2sent(l[1:], True,
                                                   self.args.beam_size != 1,
                                                   batch['oov_list'])
                #print(l[1:])
                f.write(sentence)
                f.write("\n")

    def beam_decode(self, batch, max_len, oov_nums):

        src = batch['src'].long()
        src_mask = batch['src_mask']
        src_extended = batch['src_extended'].long()

        bos_token = self.data_utils.bos
        beam_size = self.args.beam_size
        vocab_size = self.data_utils.vocab_size
        batch_size = src.size(0)

        def rvar(a):
            return a.repeat(beam_size, 1, 1)

        def rvar2(a):
            return a.repeat(beam_size, 1)

        def bottle(m):
            return m.view(batch_size * beam_size, -1)

        def unbottle(m):
            return m.view(beam_size, batch_size, -1)

        ### ner ###
        if self.args.entity_encoder_type == 'albert':
            d = self.model.entity_encoder.tokenizer.batch_encode_plus(
                batch['ner_text'],
                return_attention_masks=True,
                max_length=10,
                add_special_tokens=False,
                pad_to_max_length=True,
                return_tensors='pt')
            ner_mask = d['attention_mask'].cuda().unsqueeze(1)
            ner = d['input_ids'].cuda()
        else:
            ner_mask = None
            ner = batch['ner'].long()
        ner = self.model.entity_encoder(ner)

        if self.args.ner_at_embedding:
            memory = self.model.encode(src, src_mask, ner)
        else:
            memory = self.model.encode(src, src_mask)

        assert batch_size == 1

        beam = [
            Beam(beam_size,
                 self.data_utils.pad,
                 bos_token,
                 self.data_utils.eos,
                 min_length=self.args.min_length) for i in range(batch_size)
        ]
        memory = rvar(memory)
        ner = rvar(ner)
        src_mask = rvar(src_mask)
        src_extended = rvar2(src_extended)

        for i in range(self.args.max_len):
            if all((b.done() for b in beam)):
                break
            # Construct batch x beam_size nxt words.
            # Get all the pending current beam words and arrange for forward.
            inp = torch.stack([b.get_current_state()
                               for b in beam]).t().contiguous().view(-1, 1)
            #inp -> [1, 3]
            inp_mask = inp < self.data_utils.vocab_size
            inp = inp * inp_mask.long()

            decoder_input = inp

            if self.args.ner_at_embedding:
                final_dist = self.model.decode(memory, ner, src_mask,
                                               decoder_input, None,
                                               src_extended, oov_nums)
            else:
                final_dist = self.model.decode(memory,
                                               ner,
                                               src_mask,
                                               decoder_input,
                                               None,
                                               src_extended,
                                               oov_nums,
                                               ner_mask=ner_mask)
            # final_dist, decoder_hidden, attn_dist_p, p_gen = self.seq2seq_model.model_copy.decoder(
            #                 decoder_input, decoder_hidden,
            #                 post_encoder_outputs, post_enc_padding_mask,
            #                 extra_zeros, post_enc_batch_extend_vocab
            #                 )
            # # Run one step.

            # print('inp', inp.size())

            # decoder_outputs: beam x rnn_size

            # (b) Compute a vector of batch*beam word scores.
            out = unbottle(final_dist)
            out[:, :, 2] = 0  #no unk
            # out.size -> [3, 1, vocab]

            # (c) Advance each beam.
            for j, b in enumerate(beam):
                b.advance(out[:, j])
                # decoder_hidden = self.beam_update(j, b.get_current_origin(), beam_size, decoder_hidden)

        # (4) Extract sentences from beam.
        ret = self._from_beam(beam)

        return ret

    def _from_beam(self, beam):
        ret = {"predictions": [], "scores": []}
        for b in beam:

            n_best = self.args.n_best
            scores, ks = b.sort_finished(minimum=n_best)
            hyps = []
            for i, (times, k) in enumerate(ks[:n_best]):
                hyp = b.get_hyp(times, k)
                hyps.append(hyp)

            ret["predictions"].append(hyps)
            ret["scores"].append(scores)

        return ret
Example #17
0
def train(normal_digit, anomalies, folder, file, p_train, p_test):

    # Create an experiment
    experiment = Experiment(project_name="deep-stats-thesis",
                            workspace="stecaron",
                            disabled=True)
    experiment.add_tag("mnist_conv_ae")

    # General parameters
    DOWNLOAD_MNIST = True
    PATH_DATA = os.path.join(os.path.expanduser("~"), 'Downloads/mnist')
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    # Define training parameters
    hyper_params = {
        "EPOCH": 75,
        "NUM_WORKERS": 10,
        "BATCH_SIZE": 256,
        "LR": 0.001,
        "TRAIN_SIZE": 4000,
        "TRAIN_NOISE": p_train,
        "TEST_SIZE": 800,
        "TEST_NOISE": p_test,
        # on which class we want to learn outliers
        "CLASS_SELECTED": [normal_digit],
        # which class we want to corrupt our dataset with
        "CLASS_CORRUPTED": anomalies,
        "ALPHA": p_test,
        "MODEL_NAME": "mnist_ae_model",
        "LOAD_MODEL": False,
        "LOAD_MODEL_NAME": "mnist_ae_model"
    }

    # Log experiment parameters
    experiment.log_parameters(hyper_params)

    # Load data
    train_data, test_data = load_mnist(PATH_DATA, download=DOWNLOAD_MNIST)

    # Train the autoencoder
    model = ConvAutoEncoder2()
    optimizer = torch.optim.Adam(model.parameters(), lr=hyper_params["LR"])
    #loss_func = nn.MSELoss()
    loss_func = nn.BCELoss()

    # Build "train" and "test" datasets
    id_maj_train = numpy.random.choice(numpy.where(
        numpy.isin(train_data.train_labels, hyper_params["CLASS_SELECTED"]))[0],
        int((1 - hyper_params["TRAIN_NOISE"]) *
            hyper_params["TRAIN_SIZE"]),
        replace=False)
    id_min_train = numpy.random.choice(numpy.where(
        numpy.isin(train_data.train_labels, hyper_params["CLASS_CORRUPTED"]))[0],
        int(hyper_params["TRAIN_NOISE"] *
            hyper_params["TRAIN_SIZE"]),
        replace=False)
    id_train = numpy.concatenate((id_maj_train, id_min_train))

    id_maj_test = numpy.random.choice(numpy.where(
        numpy.isin(test_data.test_labels, hyper_params["CLASS_SELECTED"]))[0],
        int((1 - hyper_params["TEST_NOISE"]) *
            hyper_params["TEST_SIZE"]),
        replace=False)
    id_min_test = numpy.random.choice(numpy.where(
        numpy.isin(test_data.test_labels, hyper_params["CLASS_CORRUPTED"]))[0],
        int(hyper_params["TEST_NOISE"] *
            hyper_params["TEST_SIZE"]),
        replace=False)
    id_test = numpy.concatenate((id_min_test, id_maj_test))

    train_data.data = train_data.data[id_train]
    train_data.targets = train_data.targets[id_train]

    test_data.data = test_data.data[id_test]
    test_data.targets = test_data.targets[id_test]

    train_data.targets = torch.from_numpy(
        numpy.isin(train_data.train_labels,
                   hyper_params["CLASS_CORRUPTED"])).type(torch.int32)
    test_data.targets = torch.from_numpy(
        numpy.isin(test_data.test_labels,
                   hyper_params["CLASS_CORRUPTED"])).type(torch.int32)

    train_loader = Data.DataLoader(dataset=train_data,
                                   batch_size=hyper_params["BATCH_SIZE"],
                                   shuffle=True,
                                   num_workers=hyper_params["NUM_WORKERS"])

    test_loader = Data.DataLoader(dataset=test_data,
                                  batch_size=test_data.data.shape[0],
                                  shuffle=False,
                                  num_workers=hyper_params["NUM_WORKERS"])
    model.train()
    if hyper_params["LOAD_MODEL"]:
        model = torch.load(hyper_params["LOAD_MODEL_NAME"])
    else:
        train_mnist(train_loader,
                    model,
                    criterion=optimizer,
                    n_epoch=hyper_params["EPOCH"],
                    experiment=experiment,
                    device=device,
                    model_name=hyper_params["MODEL_NAME"],
                    loss_func=loss_func,
                    loss_type="binary")

    # Compute p-values
    model.to(device)
    pval, test_errors = compute_reconstruction_pval(
        train_loader, model, test_loader, device)
    pval_order = numpy.argsort(pval)

    # Plot p-values
    x_line = numpy.arange(0, len(test_data), step=1)
    y_line = numpy.linspace(0, 1, len(test_data))
    y_adj = numpy.arange(0, len(test_data),
                         step=1) / len(test_data) * hyper_params["ALPHA"]
    zoom = int(0.2 * len(test_data))  # nb of points to zoom

    #index = numpy.isin(test_data.test_labels, hyper_params["CLASS_CORRUPTED"]).astype(int)
    index = numpy.array(test_data.targets).astype(int)

    fig, (ax1, ax2) = plt.subplots(2, 1)

    ax1.scatter(numpy.arange(0, len(pval), 1),
                pval[pval_order],
                c=index[pval_order].reshape(-1))
    ax1.plot(x_line, y_line, color="green")
    ax1.plot(x_line, y_adj, color="red")
    ax1.set_title(
        f'Entire test dataset with {int(hyper_params["TEST_NOISE"] * 100)}% of noise'
    )
    ax1.set_xticklabels([])

    ax2.scatter(numpy.arange(0, zoom, 1),
                pval[pval_order][0:zoom],
                c=index[pval_order].reshape(-1)[0:zoom])
    ax2.plot(x_line[0:zoom], y_line[0:zoom], color="green")
    ax2.plot(x_line[0:zoom], y_adj[0:zoom], color="red")
    ax2.set_title('Zoomed in')
    ax2.set_xticklabels([])

    experiment.log_figure(figure_name="empirical_test_hypothesis",
                          figure=fig,
                          overwrite=True)
    plt.savefig(os.path.join(folder, "pvalues_" + file + ".png"))
    plt.show()

    # Compute some stats
    precision, recall, f1_score, average_precision, roc_auc = test_performances(
        pval, index, hyper_params["ALPHA"])
    print(f"Precision: {precision}")
    print(f"Recall: {recall}")
    print(f"F1 Score: {f1_score}")
    print(f"AUC: {roc_auc}")
    print(f"Average Precison: {average_precision}")
    experiment.log_metric("precision", precision)
    experiment.log_metric("recall", recall)
    experiment.log_metric("f1_score", f1_score)
    experiment.log_metric("auc", roc_auc)
    experiment.log_metric("average_precision", average_precision)

    # Show some examples

    fig, axs = plt.subplots(5, 5)
    fig.tight_layout()
    axs = axs.ravel()

    for i in range(25):
        image = test_data.data[pval_order[i]]
        axs[i].imshow(image, cmap='gray')
        axs[i].axis('off')

    experiment.log_figure(figure_name="rejetcted_observations",
                          figure=fig,
                          overwrite=True)
    plt.show()

    fig, axs = plt.subplots(5, 5)
    fig.tight_layout()
    axs = axs.ravel()

    for i in range(25):
        image = test_data.data[pval_order[int(len(pval) - 1) - i]]
        axs[i].imshow(image, cmap='gray')
        axs[i].axis('off')

    experiment.log_figure(figure_name="better_observations",
                          figure=fig,
                          overwrite=True)
    plt.show()

    # Save the results in the output file
    col_names = ["timestamp", "precision", "recall", "f1_score",
                 "average_precision", "auc"]
    results_file = os.path.join(folder, "results_" + file + ".csv")
    if os.path.exists(results_file):
        df_results = pandas.read_csv(results_file, names=col_names, header=0)
    else:
        df_results = pandas.DataFrame(columns=col_names)

    df_results = df_results.append(
        pandas.DataFrame(
            numpy.concatenate(
                (numpy.array(
                    datetime.datetime.fromtimestamp(
                        time.time()).strftime('%Y-%m-%d %H:%M:%S')).reshape(1),
                 precision.reshape(1), recall.reshape(1),
                 f1_score.reshape(1), average_precision.reshape(1),
                 roc_auc.reshape(1))).reshape(1, -1), columns=col_names), ignore_index=True)

    df_results.to_csv(results_file)
Example #18
0
def train(rank, defparams, hyper):

    params = {}
    for param in defparams.keys():
        params[param] = defparams[param]

    hyperp = {}
    for hp in hyper.keys():
        hyperp[hp] = hyper[hp]

    experiment = Experiment(api_key="keGmeIz4GfKlQZlOP6cit4QOi",
                            project_name="hadron-shower",
                            workspace="engineren")
    experiment.add_tag(params['exp'])

    experiment.log_parameters(hyperp)

    device = torch.device("cuda")
    torch.manual_seed(params["seed"])

    world_size = int(os.environ["SLURM_NNODES"])
    rank = int(os.environ["SLURM_PROCID"])

    dist.init_process_group(backend='nccl',
                            world_size=world_size,
                            rank=rank,
                            init_method=params["DDP_init_file"])

    aD = DCGAN_D(hyperp["ndf"]).to(device)
    aG = DCGAN_G(hyperp["ngf"], hyperp["z"]).to(device)
    aE = energyRegressor().to(device)
    aP = PostProcess_Size1Conv_EcondV2(48,
                                       13,
                                       3,
                                       128,
                                       bias=True,
                                       out_funct='none').to(device)

    optimizer_g = torch.optim.Adam(aG.parameters(),
                                   lr=hyperp["L_gen"],
                                   betas=(0.5, 0.9))
    optimizer_d = torch.optim.Adam(aD.parameters(),
                                   lr=hyperp["L_crit"],
                                   betas=(0.5, 0.9))
    optimizer_e = torch.optim.SGD(aE.parameters(), lr=hyperp["L_calib"])
    optimizer_p = torch.optim.Adam(aP.parameters(),
                                   lr=hyperp["L_post"],
                                   betas=(0.5, 0.9))

    assert torch.backends.cudnn.enabled, "NVIDIA/Apex:Amp requires cudnn backend to be enabled."
    torch.backends.cudnn.benchmark = True

    # Initialize Amp
    models, optimizers = amp.initialize([aG, aD], [optimizer_g, optimizer_d],
                                        opt_level="O1",
                                        num_losses=2)

    #aD = nn.DataParallel(aD)
    #aG = nn.DataParallel(aG)
    #aE = nn.DataParallel(aE)

    aG, aD = models
    optimizer_g, optimizer_d = optimizers

    aG = nn.parallel.DistributedDataParallel(aG, device_ids=[0])
    aD = nn.parallel.DistributedDataParallel(aD, device_ids=[0])
    aE = nn.parallel.DistributedDataParallel(aE, device_ids=[0])
    aP = nn.parallel.DistributedDataParallel(aP, device_ids=[0])

    experiment.set_model_graph(str(aG), overwrite=False)
    experiment.set_model_graph(str(aD), overwrite=False)

    if params["restore_pp"]:
        aP.load_state_dict(
            torch.load(params["restore_path_PP"] + params["post_saved"],
                       map_location=torch.device(device)))

    if params["restore"]:
        checkpoint = torch.load(params["restore_path"])
        aG.load_state_dict(checkpoint['Generator'])
        aD.load_state_dict(checkpoint['Critic'])
        optimizer_g.load_state_dict(checkpoint['G_optimizer'])
        optimizer_d.load_state_dict(checkpoint['D_optimizer'])
        itr = checkpoint['iteration']

    else:
        aG.apply(weights_init)
        aD.apply(weights_init)
        itr = 0

    if params["c0"]:
        aE.apply(weights_init)
    elif params["c1"]:
        aE.load_state_dict(
            torch.load(params["calib_saved"],
                       map_location=torch.device(device)))

    one = torch.tensor(1.0).to(device)
    mone = (one * -1).to(device)

    print('loading data...')
    paths_list = [
        '/beegfs/desy/user/eren/data_generator/pion/hcal_only/pion40part1.hdf5',
        '/beegfs/desy/user/eren/data_generator/pion/hcal_only/pion40part2.hdf5',
        '/beegfs/desy/user/eren/data_generator/pion/hcal_only/pion40part3.hdf5',
        '/beegfs/desy/user/eren/data_generator/pion/hcal_only/pion40part4.hdf5',
        '/beegfs/desy/user/eren/data_generator/pion/hcal_only/pion40part5.hdf5',
        '/beegfs/desy/user/eren/data_generator/pion/hcal_only/pion40part6.hdf5',
        '/beegfs/desy/user/eren/data_generator/pion/hcal_only/pion40part7.hdf5'
    ]

    train_data = PionsDataset(paths_list, core=True)

    train_sampler = torch.utils.data.distributed.DistributedSampler(
        train_data, num_replicas=world_size, rank=rank)

    dataloader = DataLoader(train_data,
                            batch_size=hyperp["batch_size"],
                            num_workers=0,
                            shuffle=False,
                            drop_last=True,
                            pin_memory=True,
                            sampler=train_sampler)

    print('done')

    #scheduler_g = optim.lr_scheduler.StepLR(optimizer_g, step_size=1, gamma=params["gamma_g"])
    #scheduler_d = optim.lr_scheduler.StepLR(optimizer_d, step_size=1, gamma=params["gamma_crit"])
    #scheduler_e = optim.lr_scheduler.StepLR(optimizer_e, step_size=1, gamma=params["gamma_calib"])

    #writer = SummaryWriter()

    e_criterion = nn.L1Loss()  # for energy regressor training

    dataiter = iter(dataloader)

    BATCH_SIZE = hyperp["batch_size"]
    LATENT = hyperp["z"]
    EXP = params["exp"]
    KAPPA = hyperp["kappa"]
    LAMBD = hyperp["lambda"]
    ## Post-Processing
    LDP = hyperp["LDP"]
    wMMD = hyperp["wMMD"]
    wMSE = hyperp["wMSE"]

    ## IO paths
    OUTP = params['output_path']

    for iteration in range(50000):

        iteration += itr + 1
        #---------------------TRAIN D------------------------
        for p in aD.parameters():  # reset requires_grad
            p.requires_grad_(True)  # they are set to False below in training G

        for e in aE.parameters():  # reset requires_grad (constrainer)
            e.requires_grad_(True)  # they are set to False below in training G

        for i in range(hyperp["ncrit"]):

            aD.zero_grad()
            aE.zero_grad()

            noise = np.random.uniform(-1, 1, (BATCH_SIZE, LATENT))
            noise = torch.from_numpy(noise).float()
            noise = noise.view(
                -1, LATENT, 1, 1,
                1)  #[BS, nz]  --> [Bs,nz,1,1,1] Needed for Generator
            noise = noise.to(device)

            batch = next(dataiter, None)

            if batch is None:
                dataiter = iter(dataloader)
                batch = dataiter.next()

            real_label = batch['energy']  ## energy label
            real_label = real_label.to(device)

            with torch.no_grad():
                noisev = noise  # totally freeze G, training D

            fake_data = aG(noisev, real_label).detach()

            real_data = batch['shower']  # 48x48x48 calo image
            real_data = real_data.to(device)
            real_data.requires_grad_(True)

            #### supervised-training for energy regressor!
            if params["train_calib"]:
                output = aE(real_data.float())
                e_loss = e_criterion(output, real_label.view(BATCH_SIZE, 1))
                e_loss.backward()
                optimizer_e.step()

            ######

            # train with real data

            disc_real = aD(real_data.float(), real_label.float())

            # train with fake data
            fake_data = fake_data.unsqueeze(
                1)  ## transform to [BS, 1, 48, 48, 48]
            disc_fake = aD(fake_data, real_label.float())

            # train with interpolated data
            gradient_penalty = calc_gradient_penalty(aD,
                                                     real_data.float(),
                                                     fake_data,
                                                     real_label,
                                                     BATCH_SIZE,
                                                     device,
                                                     DIM=13)

            ## wasserstein-1 distace
            w_dist = torch.mean(disc_fake) - torch.mean(disc_real)
            # final disc cost
            disc_cost = torch.mean(disc_fake) - torch.mean(
                disc_real) + LAMBD * gradient_penalty

            with amp.scale_loss(disc_cost, optimizer_d) as scaled_loss:
                scaled_loss.backward()

            optimizer_d.step()

            #--------------Log to COMET ML ----------
            if i == hyperp["ncrit"] - 1:
                experiment.log_metric("L_crit", disc_cost, step=iteration)
                experiment.log_metric("gradient_pen",
                                      gradient_penalty,
                                      step=iteration)
                experiment.log_metric("Wasserstein Dist",
                                      w_dist,
                                      step=iteration)
                if params["train_calib"]:
                    experiment.log_metric("L_const", e_loss, step=iteration)

        #---------------------TRAIN G------------------------
        for p in aD.parameters():
            p.requires_grad_(False)  # freeze D

        for c in aE.parameters():
            c.requires_grad_(False)  # freeze C

        gen_cost = None
        for i in range(hyperp["ngen"]):

            aG.zero_grad()

            noise = np.random.uniform(-1, 1, (BATCH_SIZE, LATENT))
            noise = torch.from_numpy(noise).float()
            noise = noise.view(
                -1, LATENT, 1, 1,
                1)  #[BS, nz]  --> [Bs,nz,1,1,1] Needed for Generator
            noise = noise.to(device)

            batch = next(dataiter, None)

            if batch is None:
                dataiter = iter(dataloader)
                batch = dataiter.next()

            real_label = batch['energy']  ## energy label
            real_label = real_label.to(device)

            noise.requires_grad_(True)

            real_data = batch['shower']  # 48x48x48 calo image
            real_data = real_data.to(device)

            fake_data = aG(noise, real_label.float())
            fake_data = fake_data.unsqueeze(
                1)  ## transform to [BS, 1, 48, 48, 48]

            ## calculate loss function
            gen_cost = aD(fake_data.float(), real_label.float())

            ## label conditioning
            #output_g = aE(fake_data)
            #output_r = aE(real_data.float())

            output_g = 0.0  #for now
            output_r = 0.0  #for now

            aux_fake = (output_g - real_label)**2
            aux_real = (output_r - real_label)**2

            aux_errG = torch.abs(aux_fake - aux_real)

            ## Total loss function for generator
            g_cost = -torch.mean(gen_cost) + KAPPA * torch.mean(aux_errG)

            with amp.scale_loss(g_cost, optimizer_g) as scaled_loss_G:
                scaled_loss_G.backward()

            optimizer_g.step()

            #--------------Log to COMET ML ----------
            experiment.log_metric("L_Gen", g_cost, step=iteration)

            ## plot example image
            if iteration % 100 == 0.0 or iteration == 1:
                image = fake_data.view(-1, 48, 13, 13).cpu().detach().numpy()
                cmap = mpl.cm.viridis
                cmap.set_bad('white', 1.)
                figExIm = plt.figure(figsize=(6, 6))
                axExIm1 = figExIm.add_subplot(1, 1, 1)
                image1 = np.sum(image[0], axis=0)
                masked_array1 = np.ma.array(image1, mask=(image1 == 0.0))
                im1 = axExIm1.imshow(masked_array1,
                                     filternorm=False,
                                     interpolation='none',
                                     cmap=cmap,
                                     vmin=0.01,
                                     vmax=100,
                                     norm=mpl.colors.LogNorm(),
                                     origin='lower')
                figExIm.patch.set_facecolor('white')
                axExIm1.set_xlabel('y [cells]', family='serif')
                axExIm1.set_ylabel('x [cells]', family='serif')
                figExIm.colorbar(im1)

                experiment.log_figure(figure=plt, figure_name="x-y")

                figExIm = plt.figure(figsize=(6, 6))
                axExIm2 = figExIm.add_subplot(1, 1, 1)
                image2 = np.sum(image[0], axis=1)
                masked_array2 = np.ma.array(image2, mask=(image2 == 0.0))
                im2 = axExIm2.imshow(masked_array2,
                                     filternorm=False,
                                     interpolation='none',
                                     cmap=cmap,
                                     vmin=0.01,
                                     vmax=100,
                                     norm=mpl.colors.LogNorm(),
                                     origin='lower')
                figExIm.patch.set_facecolor('white')
                axExIm2.set_xlabel('y [cells]', family='serif')
                axExIm2.set_ylabel('z [layers]', family='serif')
                figExIm.colorbar(im2)

                experiment.log_figure(figure=plt, figure_name="y-z")

                figExIm = plt.figure(figsize=(6, 6))
                axExIm3 = figExIm.add_subplot(1, 1, 1)
                image3 = np.sum(image[0], axis=2)
                masked_array3 = np.ma.array(image3, mask=(image3 == 0.0))
                im3 = axExIm3.imshow(masked_array3,
                                     filternorm=False,
                                     interpolation='none',
                                     cmap=cmap,
                                     vmin=0.01,
                                     vmax=100,
                                     norm=mpl.colors.LogNorm(),
                                     origin='lower')
                figExIm.patch.set_facecolor('white')
                axExIm3.set_xlabel('x [cells]', family='serif')
                axExIm3.set_ylabel('z [layers]', family='serif')
                figExIm.colorbar(im3)
                #experiment.log_metric("L_aux", aux_errG, step=iteration)
                experiment.log_figure(figure=plt, figure_name="x-z")

                ## E-sum monitoring

                figEsum = plt.figure(figsize=(6, 6 * 0.77 / 0.67))
                axEsum = figEsum.add_subplot(1, 1, 1)
                etot_real = getTotE(real_data.cpu().detach().numpy(),
                                    xbins=13,
                                    ybins=13)
                etot_fake = getTotE(image, xbins=13, ybins=13)

                axEsumReal = axEsum.hist(etot_real,
                                         bins=25,
                                         range=[0, 1500],
                                         weights=np.ones_like(etot_real) /
                                         (float(len(etot_real))),
                                         label="orig",
                                         color='blue',
                                         histtype='stepfilled')

                axEsumFake = axEsum.hist(etot_fake,
                                         bins=25,
                                         range=[0, 1500],
                                         weights=np.ones_like(etot_fake) /
                                         (float(len(etot_fake))),
                                         label="generated",
                                         color='red',
                                         histtype='stepfilled')

                axEsum.text(0.25,
                            0.81,
                            "WGAN",
                            horizontalalignment='left',
                            verticalalignment='top',
                            transform=axEsum.transAxes,
                            color='red')
                axEsum.text(0.25,
                            0.87,
                            'GEANT 4',
                            horizontalalignment='left',
                            verticalalignment='top',
                            transform=axEsum.transAxes,
                            color='blue')

                experiment.log_figure(figure=plt, figure_name="E-sum")

        #end = timer()
        #print(f'---train G elapsed time: {end - start}')

        if params["train_postP"]:
            #---------------------TRAIN P------------------------
            for p in aD.parameters():
                p.requires_grad_(False)  # freeze D

            for c in aG.parameters():
                c.requires_grad_(False)  # freeze G

            lossP = None
            for i in range(1):

                noise = np.random.uniform(-1, 1, (BATCH_SIZE, LATENT))
                noise = torch.from_numpy(noise).float()
                noise = noise.view(
                    -1, LATENT, 1, 1,
                    1)  #[BS, nz]  --> [Bs,nz,1,1,1] Needed for Generator
                noise = noise.to(device)

                batch = next(dataiter, None)

                if batch is None:
                    dataiter = iter(dataloader)
                    batch = dataiter.next()

                real_label = batch['energy']  ## energy label
                real_label = real_label.to(device)

                noise.requires_grad_(True)

                real_data = batch['shower']  # calo image
                real_data = real_data.to(device)

                ## forward pass to generator
                fake_data = aG(noise, real_label.float())
                fake_data = fake_data.unsqueeze(
                    1)  ## transform to [BS, 1, layer, size, size]

                ### first LossD_P
                fake_dataP = aP(fake_data.float(), real_label.float())
                lossD_P = aD(fake_dataP.float(), real_label.float())
                lossD_P = lossD_P.mean()

                ## lossFixP

                real_sorted = real_data.view(BATCH_SIZE, -1)
                fake_sorted = fake_dataP.view(BATCH_SIZE, -1)

                real_sorted, _ = torch.sort(real_sorted,
                                            dim=1,
                                            descending=True)  #.view(900,1)
                fake_sorted, _ = torch.sort(fake_sorted,
                                            dim=1,
                                            descending=True)  #.view(900,1)

                lossFixPp1 = mmd_hit_sortKernel(real_sorted.float(),
                                                fake_sorted,
                                                kernel_size=100,
                                                stride=50,
                                                cutoff=2000,
                                                alpha=200)

                lossFixPp2 = F.mse_loss(fake_dataP.view(BATCH_SIZE, -1),
                                        fake_data.detach().view(
                                            BATCH_SIZE, -1),
                                        reduction='mean')

                lossFixP = wMMD * lossFixPp1 + wMSE * lossFixPp2

                lossP = LDP * lossD_P - lossFixP

                lossP.backward(mone)
                optimizer_p.step()

        if iteration % 100 == 0 or iteration == 1:
            print('iteration: {}, critic loss: {}'.format(
                iteration,
                disc_cost.cpu().data.numpy()))
            if rank == 0:
                torch.save(
                    {
                        'Generator': aG.state_dict(),
                        'Critic': aD.state_dict(),
                        'G_optimizer': optimizer_g.state_dict(),
                        'D_optimizer': optimizer_d.state_dict(),
                        'iteration': iteration
                    }, OUTP + '{0}/wgan_itrs_{1}.pth'.format(EXP, iteration))
                if params["train_calib"]:
                    torch.save(
                        aE.state_dict(),
                        OUTP + '/{0}/netE_itrs_{1}.pth'.format(EXP, iteration))
                if params["train_postP"]:
                    torch.save(
                        aP.state_dict(),
                        OUTP + '{0}/netP_itrs_{1}.pth'.format(EXP, iteration))
#Test main tree module, only run comet experiment locally to debug callbacks
import glob
import geopandas as gpd
import os

is_travis = 'TRAVIS' in os.environ
if not is_travis:
    from comet_ml import Experiment
    experiment = Experiment(project_name="neontrees", workspace="bw4sz")
    experiment.add_tag("testing")
else:
    experiment = None

import numpy as np
import pytest
import pandas as pd
import rasterio
import tensorflow as tf

from DeepTreeAttention.utils import metrics
from DeepTreeAttention import trees
from DeepTreeAttention.generators import boxes
from matplotlib.pyplot import imshow
from tensorflow.keras import metrics as keras_metrics

#random label predictions just for testing
test_predictions = "data/raw/2019_BART_5_320000_4881000_image_small.shp"

#Use a small rgb crop as a example tile
test_sensor_tile = "data/raw/2019_BART_5_320000_4881000_image_crop.tif"
Example #20
0
print("Train a XGBoost model")
val_size = 100000
# train = train.sort(['Date'])
print(train.tail(1)["Date"])
X_train, X_test = train_test_split(train, test_size=0.01)
# X_train, X_test = train.head(len(train) - val_size), train.tail(val_size)
dtrain = xgb.DMatrix(X_train[features], np.log(X_train["Sales"] + 1))
dvalid = xgb.DMatrix(X_test[features], np.log(X_test["Sales"] + 1))
dtest = xgb.DMatrix(test[features])

watchlist = [(dvalid, "eval"), (dtrain, "train")]

## Experiment 1: everything as normal, using .train():
experiment = Experiment()
experiment.add_tag("metrics")
results = {}
gbm = xgb.train(
    params,
    dtrain,
    num_trees,
    evals=watchlist,
    early_stopping_rounds=50,
    feval=rmspe_xg,
    verbose_eval=True,
    evals_result=results,
)
experiment.end()

## Experiment 2: no results (thus no metrics), using .train():
experiment = Experiment()
hyper_params = {
    "sequence_length": 28,
    "input_size": 28,
    "hidden_size": 128,
    "num_layers": 3,
    "num_classes": 10,
    "batch_size": 100,
    "num_epochs": 2,
    "learning_rate": 0.02
}

experiment = Experiment(api_key="YOUR_API_KEY",
                        project_name="YOUR PROJECT",
                        workspace="YOUR WORKSPACE")

experiment.add_tag('pytorch')

# MNIST Dataset
train_dataset = dsets.MNIST(root='./data/',
                            train=True,
                            transform=transforms.ToTensor(),
                            download=True)

test_dataset = dsets.MNIST(root='./data/',
                           train=False,
                           transform=transforms.ToTensor())

# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(
    dataset=train_dataset,
    batch_size=hyper_params['batch_size'],
Example #22
0
from comet_ml import Experiment
import tensorflow as tf
from DeepTreeAttention.trees import AttentionModel
from DeepTreeAttention.models import metadata
from DeepTreeAttention.callbacks import callbacks
import pandas as pd

model = AttentionModel(config="/home/b.weinstein/DeepTreeAttention/conf/tree_config.yml")
model.create()

#Log config
experiment = Experiment(project_name="neontrees", workspace="bw4sz")
experiment.log_parameters(model.config["train"])
experiment.log_parameters(model.config["evaluation"])    
experiment.log_parameters(model.config["predict"])
experiment.add_tag("HSI")

##Train

#Train see config.yml for tfrecords path with weighted classes in cross entropy
model.read_data()
class_weight = model.calc_class_weight()

##Train subnetwork
experiment.log_parameter("Train subnetworks", True)
with experiment.context_manager("HSI_spatial_subnetwork"):
    print("Train HSI spatial subnetwork")
    model.read_data(mode="HSI_submodel")
    model.train(submodel="spatial", sensor="hyperspectral",class_weight=[class_weight, class_weight, class_weight], experiment=experiment)

with experiment.context_manager("HSI_spectral_subnetwork"):
Example #23
0
class Solver():
    def __init__(self, args):
        self.args = args
        self.data_utils = DataUtils(args)
        if args.save_checkpoints:
            self.model_dir = make_save_dir(os.path.join(args.model_dir, args.sampler_label, args.exp_name))
        self.disable_comet = args.disable_comet
        colorama.init(autoreset=True) 

    def make_model(self, src_vocab, tgt_vocab, N=6, 
        d_model=512, d_ff=2048, h=8, dropout=0.1, g_drop=0.1):
        
        "Helper: Construct a model from hyperparameters."
        c = copy.deepcopy
        attn = MultiHeadedAttention(h, d_model)
        ff = PositionwiseFeedForward(d_model, d_ff, dropout)
        position = PositionalEncoding(d_model, dropout)
        word_embed = nn.Sequential(Embeddings(d_model, src_vocab), c(position))

        model = Sampler(Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N), word_embed, Generator(d_model, self.args.num_classes, g_drop))
        print(model)
        # This was important from their code. 
        # Initialize parameters with Glorot / fan_avg.
        for p in model.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)
        return model.cuda()

    def train(self):
        # logging
        if not self.disable_comet:
            COMET_PROJECT_NAME = 'weibo-stc'
            COMET_WORKSPACE = 'timchen0618'

            self.exp = Experiment(project_name=COMET_PROJECT_NAME,
                                  workspace=COMET_WORKSPACE,
                                  auto_output_logging='simple',
                                  auto_metric_logging=None,
                                  display_summary=False,
                                  )

            self.exp.add_tag(self.args.sampler_label)
            self.exp.add_tag('Sampler')
            if self.args.processed:
                self.exp.add_tag('processed')
            else:
                self.exp.add_tag('unprocessed')
            self.exp.set_name(self.args.exp_name)

        ###### loading .... ######
        vocab_size = self.data_utils.vocab_size
        print("============================")  
        print("=======start to build=======")
        print("============================") 
        print("Vocab Size: %d"%(vocab_size))

        #make model
        self.model = self.make_model(src_vocab=vocab_size, 
                                     tgt_vocab=vocab_size, 
                                     N=self.args.num_layer, 
                                     dropout=self.args.dropout,
                                     g_drop=self.args.generator_drop
                                     )
        self.model.load_embedding(self.args.pretrain_model)
        # sys.exit(0)

        lr = 1e-7
        generator_lr = 1e-4
        d_model = 512
        warmup_steps = self.args.warmup_steps
        # optim = torch.optim.Adam([
        #                           {'params':list(self.model.encoder.parameters())+list(self.model.src_embed.parameters())},
        #                           {'params':self.model.generator.parameters(), 'lr':generator_lr} 
        #                           ], lr=lr, betas=(0.9, 0.98), eps=1e-9)
        optim = torch.optim.AdamW([
                                  {'params':list(self.model.encoder.parameters())+list(self.model.src_embed.parameters())},
                                  {'params':self.model.generator.parameters(), 'lr':generator_lr} 
                                  ], lr=lr, betas=(0.9, 0.98), eps=1e-9)

        # optim = torch.optim.Adam(self.model.parameters(), lr=lr, betas=(0.9, 0.98), eps=1e-9)
        total_loss = []
        train_accs = []
        start = time.time()

        step = 0
        for epoch in range(self.args.num_epoch):
            self.model.train()
            train_data = self.data_utils.data_yielder(epo=epoch)
            

            for batch in train_data:
                optim.zero_grad()
                if step % 20 == 1:
                    lr = self.args.lr * (1/(d_model**0.5))*min((1/(step)**0.5), step * (1/(warmup_steps**1.5)))
                    optim.param_groups[0]['lr'] = lr
                    lr2 = self.args.g_lr * (1/(d_model**0.5))*min((1/(step)**0.5), step * (1/(warmup_steps**1.5)))
                    optim.param_groups[1]['lr'] = lr2
                    # for param_group in optim.param_groups:
                    #     param_group['lr'] = lr

                src = batch['src'].long()
                src_mask = batch['src_mask'].long()
                y = batch['y']

                #forward model
                out = self.model.forward(src, src_mask)

                # print out
                pred = out.topk(5, dim=-1)[1].squeeze().detach().cpu().numpy()
                gg = batch['src'].long().detach().cpu().numpy()
                yy = batch['y']

                #compute loss
                
                loss = self.model.loss_compute(out, y, self.args.multi)
                # else:
                #     loss = self.model.loss_compute(out, y.long().unsqueeze(1), self.args.multi)
                #compute acc
                acc = self.model.compute_acc(out, batch['y'], self.args.multi)

                loss.backward()
                # print('emb_size', self.model.src_embed[0].lut.weight.size())
                # print('emb', self.model.src_embed[0].lut.weight.grad.sum())
                # print('enc_out', self.model.encoder.layers[0].feed_forward.w_1.weight.grad)
                optim.step()
                total_loss.append(loss.detach().cpu().numpy())
                train_accs.append(acc)
                
                if step % self.args.print_every_step == 1:
                    elapsed = time.time() - start
                    print(Fore.GREEN + "[Step: %d]"%step + 
                          Fore.WHITE + " Loss: %f | Time: %f | Acc: %4.4f | Lr: %4.6f" %(np.mean(total_loss), elapsed, sum(train_accs)/len(train_accs), optim.param_groups[0]['lr']))
                    print(Fore.RED + 'src:', Style.RESET_ALL, self.id2sent(self.data_utils, gg[0][:150]))
                    print(Fore.RED + 'y:', Style.RESET_ALL, yy[0])
                    print(Fore.RED + 'pred:', Style.RESET_ALL, pred[0])
                    # print(train_accs)
                    # self.log.add_scalar('Loss/train', np.mean(total_loss), step)
                    if not self.disable_comet:
                        self.exp.log_metric('Train Loss', np.mean(total_loss), step=step)
                        self.exp.log_metric('Train Acc', sum(train_accs)/len(train_accs), step=step)
                        self.exp.log_metric('Learning Rate', lr, step=step)
                    # print('grad', self.model.src_embed.grad)
                    print(Style.RESET_ALL)
                    start = time.time()
                    total_loss = []
                    train_accs = []

                if step % self.args.valid_every_step == self.args.valid_every_step-1:
                    val_yielder = self.data_utils.data_yielder(epo=0, valid=True)

                    self.model.eval()
                    valid_losses = []
                    valid_accs = []
                    for batch in val_yielder:
                        with torch.no_grad():
                            out = self.model.forward(batch['src'].long(), batch['src_mask'].long())
                            loss = self.model.loss_compute(out, batch['y'], self.args.multi)
                                
                            acc = self.model.compute_acc(out, batch['y'], self.args.multi)
                            valid_accs.append(acc)
                            valid_losses.append(loss.item())

                    print('=============================================')
                    print('Validation Result -> Loss : %6.6f | Acc : %6.6f' %(sum(valid_losses)/len(valid_losses), sum(valid_accs)/ len(valid_accs)))
                    print('=============================================')
                    self.model.train()
                    # self.log.add_scalar('Loss/valid', sum(valid_losses)/len(valid_losses), step)
                    if not self.disable_comet:
                        self.exp.log_metric('Valid Loss', sum(valid_losses)/ len(valid_losses), step=step)
                        self.exp.log_metric('Valid Acc', sum(valid_accs)/ len(valid_accs), step=step)

                    if self.args.save_checkpoints:
                        print('saving!!!!')
                        model_name = str(int(step/1000)) + 'k_' + '%6.6f_%6.6f'%(sum(valid_losses)/len(valid_losses), sum(valid_accs)/ len(valid_accs)) + 'model.pth'
                        state = {'step': step, 'state_dict': self.model.state_dict()}
                        #state = {'step': step, 'state_dict': self.model.state_dict(),
                        #    'optimizer' : optim_topic_gen.state_dict()}
                        torch.save(state, os.path.join(self.model_dir, model_name))
                step += 1

    def test(self):
        #prepare model
        path = self.args.load_model
        max_len = self.args.max_len
        state_dict = torch.load(path)['state_dict']
        vocab_size = self.data_utils.vocab_size
        self.model = self.make_model(src_vocab = vocab_size, 
                                     tgt_vocab = vocab_size, 
                                     N = self.args.num_layer, 
                                     dropout = self.args.dropout,
                                     g_drop = self.args.generator_drop
                                     )
        model = self.model
        model.load_state_dict(state_dict)
        pred_dir = make_save_dir(self.args.pred_dir)
        filename = self.args.filename

        #start decoding
        data_yielder = self.data_utils.data_yielder()
        total_loss = []
        start = time.time()

        #file
        f = open(os.path.join(pred_dir, filename), 'w')

        self.model.eval()
        step = 0
        total_loss = []  
        corr, total = 0.0, 0.0
        for batch in data_yielder:
            step += 1
            if step % 10 == 1:
                print('Step ', step)
            # out = self.model.greedy_decode(batch['src'].long(), batch['src_mask'], max_len, self.data_utils.bos)
            with torch.no_grad():
                out = self.model.forward(batch['src'].long(), batch['src_mask'].long())
                if self.args.multi:
                # if True:
                    print('out', out.size())
                    print('y', batch['y'])
                    loss = self.model.loss_compute(out, batch['y'], self.args.multi)
                    c = self.model.compute_acc(out, batch['y'], self.args.multi)
                    corr += c*len(batch['y'])
                    total += len(batch['y'])

                    preds = out.argmax(dim=-1)
                    for x in preds:
                        f.write(str(x.item()))
                        f.write('\n')
                        # f.write(str(p.item()))
                        # f.write('\n')
                else:
                    loss = self.model.loss_compute(out, batch['y'], self.args.multi)
                    # preds = out.argmax(dim = -1)
                    _, preds = out.topk(dim = -1, k=10)
                    print(preds.size())

                    for p in preds:
                        for x in p:
                            f.write(str(x.item()))
                            f.write(' ')
                        f.write('\n')
                        # f.write(str(p.item()))
                        # f.write('\n')
                total_loss.append(loss.item())
        print(total_loss)
        print(sum(total_loss)/ len(total_loss))
        print('acc: ', corr/float(total))
        print(corr, ' ', total)

    def compute_acc(self, out, y):
        corr = 0.
        pred = out.argmax(dim = -1)
        for i, target in enumerate(y):
            # print(target)
            # print(pred[i])
            if pred[i] in target:
                corr += 1
        return corr, len(y)

    def id2sent(self, data_utils, indices, test=False):
        #print(indices)
        sent = []
        word_dict={}
        for index in indices:
            if test and (index == data_utils.word2id['</s>'] or index in word_dict):
                continue
            sent.append(data_utils.index2word[index])
            word_dict[index] = 1

        return ' '.join(sent)
import tensorflow as tf
from DeepTreeAttention.trees import AttentionModel
from DeepTreeAttention.models import metadata
from DeepTreeAttention.callbacks import callbacks
import pandas as pd

model = AttentionModel(
    config="/home/b.weinstein/DeepTreeAttention/conf/tree_config.yml")
model.create()

#Log config
experiment = Experiment(project_name="neontrees", workspace="bw4sz")
experiment.log_parameters(model.config["train"])
experiment.log_parameters(model.config["evaluation"])
experiment.log_parameters(model.config["predict"])
experiment.add_tag("metadata")

##Train
#Train see config.yml for tfrecords path with weighted classes in cross entropy
model.read_data(mode="metadata")

#Cree
inputs, outputs = metadata.metadata_model(
    classes=model.config["train"]["classes"])
meta_model = tf.keras.Model(inputs=inputs,
                            outputs=outputs,
                            name="DeepTreeAttention")

meta_model.compile(loss='categorical_crossentropy',
                   optimizer='adam',
                   metrics=["acc"])
Example #25
0
def run(args, train, sparse_evidences, claims_dict):
    BATCH_SIZE = args.batch_size
    LEARNING_RATE = args.learning_rate
    DATA_SAMPLING = args.data_sampling
    NUM_EPOCHS = args.epochs
    MODEL = args.model
    RANDOMIZE = args.no_randomize
    PRINT = args.print

    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda:0" if use_cuda else "cpu")

    logger = Logger('./logs/{}'.format(time.localtime()))

    if MODEL:
        print("Loading pretrained model...")
        model = torch.load(MODEL)
        model.load_state_dict(torch.load(MODEL).state_dict())
    else:
        model = cdssm.CDSSM()
        model = model.cuda()
        model = model.to(device)

    # model = cdssm.CDSSM()
    # model = model.cuda()
    # model = model.to(device)

    if torch.cuda.device_count() > 0:
        print("Let's use", torch.cuda.device_count(), "GPU(s)!")
        model = nn.DataParallel(model)

    print("Created model with {:,} parameters.".format(
        putils.count_parameters(model)))

    # if MODEL:
    # print("TEMPORARY change to loading!")
    # model.load_state_dict(torch.load(MODEL).state_dict())

    print("Created dataset...")

    # use an 80/20 train/validate split!
    train_size = int(len(train) * 0.80)
    #test = int(len(train) * 0.5)
    train_dataset = pytorch_data_loader.WikiDataset(
        train[:train_size],
        claims_dict,
        data_sampling=DATA_SAMPLING,
        sparse_evidences=sparse_evidences,
        randomize=RANDOMIZE)
    val_dataset = pytorch_data_loader.WikiDataset(
        train[train_size:],
        claims_dict,
        data_sampling=DATA_SAMPLING,
        sparse_evidences=sparse_evidences,
        randomize=RANDOMIZE)

    train_dataloader = DataLoader(train_dataset,
                                  batch_size=BATCH_SIZE,
                                  num_workers=0,
                                  shuffle=True,
                                  collate_fn=pytorch_data_loader.PadCollate())
    val_dataloader = DataLoader(val_dataset,
                                batch_size=BATCH_SIZE,
                                num_workers=0,
                                shuffle=True,
                                collate_fn=pytorch_data_loader.PadCollate())

    # Loss and optimizer
    criterion = torch.nn.NLLLoss()
    # criterion = torch.nn.SoftMarginLoss()
    # if torch.cuda.device_count() > 0:
    # print("Let's parallelize the backward pass...")
    # criterion = DataParallelCriterion(criterion)
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=LEARNING_RATE,
                                 weight_decay=1e-3)

    OUTPUT_FREQ = max(int((len(train_dataset) / BATCH_SIZE) * 0.02), 20)
    parameters = {
        "batch size": BATCH_SIZE,
        "epochs": NUM_EPOCHS,
        "learning rate": LEARNING_RATE,
        "optimizer": optimizer.__class__.__name__,
        "loss": criterion.__class__.__name__,
        "training size": train_size,
        "data sampling rate": DATA_SAMPLING,
        "data": args.data,
        "sparse_evidences": args.sparse_evidences,
        "randomize": RANDOMIZE,
        "model": MODEL
    }
    experiment = Experiment(api_key="YLsW4AvRTYGxzdDqlWRGCOhee",
                            project_name="clsm",
                            workspace="moinnadeem")
    experiment.add_tag("train")
    experiment.log_asset("cdssm.py")
    experiment.log_dataset_info(name=args.data)
    experiment.log_parameters(parameters)

    model_checkpoint_dir = "models/saved_model"
    for key, value in parameters.items():
        if type(value) == str:
            value = value.replace("/", "-")
        if key != "model":
            model_checkpoint_dir += "_{}-{}".format(key.replace(" ", "_"),
                                                    value)

    print("Training...")
    beginning_time = time.time()
    best_loss = torch.tensor(float("inf"),
                             dtype=torch.float)  # begin loss at infinity

    for epoch in range(NUM_EPOCHS):
        beginning_time = time.time()
        mean_train_acc = 0.0
        train_running_loss = 0.0
        train_running_accuracy = 0.0
        model.train()
        experiment.log_current_epoch(epoch)

        with experiment.train():
            for train_batch_num, inputs in enumerate(train_dataloader):
                claims_tensors, claims_text, evidences_tensors, evidences_text, labels = inputs

                claims_tensors = claims_tensors.cuda()
                evidences_tensors = evidences_tensors.cuda()
                labels = labels.cuda()
                #claims = claims.to(device).float()
                #evidences = evidences.to(device).float()
                #labels = labels.to(device)

                y_pred = model(claims_tensors, evidences_tensors)

                y = (labels)
                # y = y.unsqueeze(0)
                # y = y.unsqueeze(0)
                # y_pred = parallel.gather(y_pred, 0)

                y_pred = y_pred.squeeze()
                # y = y.squeeze()

                loss = criterion(y_pred, torch.max(y, 1)[1])
                # loss = criterion(y_pred, y)

                y = y.float()
                binary_y = torch.max(y, 1)[1]
                binary_pred = torch.max(y_pred, 1)[1]
                accuracy = (binary_y == binary_pred).to("cuda")
                accuracy = accuracy.float()
                accuracy = accuracy.mean()
                train_running_accuracy += accuracy.item()
                mean_train_acc += accuracy.item()
                train_running_loss += loss.item()

                if PRINT:
                    for idx in range(len(y)):
                        print(
                            "Claim: {}, Evidence: {}, Prediction: {}, Label: {}"
                            .format(claims_text[0], evidences_text[idx],
                                    torch.exp(y_pred[idx]), y[idx]))

                if (train_batch_num %
                        OUTPUT_FREQ) == 0 and train_batch_num > 0:
                    elapsed_time = time.time() - beginning_time
                    binary_y = torch.max(y, 1)[1]
                    binary_pred = torch.max(y_pred, 1)[1]
                    print(
                        "[{}:{}:{:3f}s] training loss: {}, training accuracy: {}, training recall: {}"
                        .format(
                            epoch, train_batch_num /
                            (len(train_dataset) / BATCH_SIZE), elapsed_time,
                            train_running_loss / OUTPUT_FREQ,
                            train_running_accuracy / OUTPUT_FREQ,
                            recall_score(binary_y.cpu().detach().numpy(),
                                         binary_pred.cpu().detach().numpy())))

                    # 1. Log scalar values (scalar summary)
                    info = {
                        'train_loss': train_running_loss / OUTPUT_FREQ,
                        'train_accuracy': train_running_accuracy / OUTPUT_FREQ
                    }

                    for tag, value in info.items():
                        experiment.log_metric(tag,
                                              value,
                                              step=train_batch_num *
                                              (epoch + 1))
                        logger.scalar_summary(tag, value, train_batch_num + 1)

                    ## 2. Log values and gradients of the parameters (histogram summary)
                    for tag, value in model.named_parameters():
                        tag = tag.replace('.', '/')
                        logger.histo_summary(tag,
                                             value.detach().cpu().numpy(),
                                             train_batch_num + 1)
                        logger.histo_summary(tag + '/grad',
                                             value.grad.detach().cpu().numpy(),
                                             train_batch_num + 1)

                    train_running_loss = 0.0
                    beginning_time = time.time()
                    train_running_accuracy = 0.0
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

        # del loss
        # del accuracy
        # del claims_tensors
        # del claims_text
        # del evidences_tensors
        # del evidences_text
        # del labels
        # del y
        # del y_pred
        # torch.cuda.empty_cache()

        print("Running validation...")
        model.eval()
        pred = []
        true = []
        avg_loss = 0.0
        val_running_accuracy = 0.0
        val_running_loss = 0.0
        beginning_time = time.time()
        with experiment.validate():
            for val_batch_num, val_inputs in enumerate(val_dataloader):
                claims_tensors, claims_text, evidences_tensors, evidences_text, labels = val_inputs

                claims_tensors = claims_tensors.cuda()
                evidences_tensors = evidences_tensors.cuda()
                labels = labels.cuda()

                y_pred = model(claims_tensors, evidences_tensors)

                y = (labels)
                # y_pred = parallel.gather(y_pred, 0)

                y_pred = y_pred.squeeze()

                loss = criterion(y_pred, torch.max(y, 1)[1])

                y = y.float()

                binary_y = torch.max(y, 1)[1]
                binary_pred = torch.max(y_pred, 1)[1]
                true.extend(binary_y.tolist())
                pred.extend(binary_pred.tolist())

                accuracy = (binary_y == binary_pred).to("cuda")

                accuracy = accuracy.float().mean()
                val_running_accuracy += accuracy.item()
                val_running_loss += loss.item()
                avg_loss += loss.item()

                if (val_batch_num % OUTPUT_FREQ) == 0 and val_batch_num > 0:
                    elapsed_time = time.time() - beginning_time
                    print(
                        "[{}:{}:{:3f}s] validation loss: {}, accuracy: {}, recall: {}"
                        .format(
                            epoch,
                            val_batch_num / (len(val_dataset) / BATCH_SIZE),
                            elapsed_time, val_running_loss / OUTPUT_FREQ,
                            val_running_accuracy / OUTPUT_FREQ,
                            recall_score(binary_y.cpu().detach().numpy(),
                                         binary_pred.cpu().detach().numpy())))

                    # 1. Log scalar values (scalar summary)
                    info = {'val_accuracy': val_running_accuracy / OUTPUT_FREQ}

                    for tag, value in info.items():
                        experiment.log_metric(tag,
                                              value,
                                              step=val_batch_num * (epoch + 1))
                        logger.scalar_summary(tag, value, val_batch_num + 1)

                    ## 2. Log values and gradients of the parameters (histogram summary)
                    for tag, value in model.named_parameters():
                        tag = tag.replace('.', '/')
                        logger.histo_summary(tag,
                                             value.detach().cpu().numpy(),
                                             val_batch_num + 1)
                        logger.histo_summary(tag + '/grad',
                                             value.grad.detach().cpu().numpy(),
                                             val_batch_num + 1)

                    val_running_accuracy = 0.0
                    val_running_loss = 0.0
                    beginning_time = time.time()

        # del loss
        # del accuracy
        # del claims_tensors
        # del claims_text
        # del evidences_tensors
        # del evidences_text
        # del labels
        # del y
        # del y_pred
        # torch.cuda.empty_cache()

        accuracy = accuracy_score(true, pred)
        print("[{}] mean accuracy: {}, mean loss: {}".format(
            epoch, accuracy, avg_loss / len(val_dataloader)))

        true = np.array(true).astype("int")
        pred = np.array(pred).astype("int")
        print(classification_report(true, pred))

        best_loss = torch.tensor(
            min(avg_loss / len(val_dataloader),
                best_loss.cpu().numpy()))
        is_best = bool((avg_loss / len(val_dataloader)) <= best_loss)

        putils.save_checkpoint(
            {
                "epoch": epoch,
                "model": model,
                "best_loss": best_loss
            },
            is_best,
            filename="{}_loss_{}".format(model_checkpoint_dir,
                                         best_loss.cpu().numpy()))
Example #26
0
from comet_ml import Experiment
from film_test.cifar import qa_cifar

experiment = Experiment(
    api_key="ZfKpzyaedH6ajYSiKmvaSwyCs",
    project_name="film-test",
    workspace="fgolemo")
experiment.add_tag("qa")
experiment.add_tag("vanilla-resnet")


from torch import nn, optim
from tqdm import trange

from film_test.resnet import resnet18
from film_test.traintest import train, test, device

EPOCHS = 24

net = resnet18(num_classes=2)
net = net.to(device)

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)

trainloader, testloader = qa_cifar()

for epoch in trange(EPOCHS):
    experiment.log_metric("epoch", epoch)
    train(
        net,
Example #27
0
npa = np.array

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

pi = torch.Tensor([np.pi]).float().to(device)

exp_name = "24-newReparam"
exp_dir = "experiments/" + exp_name + "-" + strftime("%Y%m%d%H%M%S")

experiment = Experiment(api_key="ZfKpzyaedH6ajYSiKmvaSwyCs",
                        project_name="rezende",
                        workspace="fgolemo")
experiment.log_parameters(params)
experiment.set_name(exp_name)
experiment.add_tag("random-shape")


def normal(x, mu, sigma_sq):
    a = (-1 * (x - mu).pow(2) / (2 * sigma_sq)).exp()
    b = 1 / (2 * sigma_sq * pi.expand_as(sigma_sq)).sqrt()

    return a * b


class Policy(nn.Module):
    def __init__(self, num_latents, num_outputs):
        super(Policy, self).__init__()

        self.relu = nn.ReLU()
Example #28
0
                    action='store_true',
                    help='resume from checkpoint')
args = parser.parse_args()

# Ideas
# Pretrain network without permuted convolutions. Then train it using permuted/shuffled convolutions
################################################
num_channels_permuted = "5, 10"
# model_name = "DenseNet_reduced_1x1_regularized_conv1-2"
# model_name = "small_CNN_1x1_3x3_no_bias_LBFGS"
model_name = "PermSmallCNN_SGD_LR_0.0001_LRS_no_bias"
gpu_id = 3
reg_lambda = 5e-3
################################################

experiment.add_tag(model_name)
experiment.add_tag(num_channels_permuted)
experiment.log_other("Network", model_name)
experiment.log_other("Dataset", "CIFAR-100")
experiment.log_other("Type", model_name)
# experiment.log_other("Regularizer", reg_lambda)

device = 'cuda:' + str(gpu_id) if torch.cuda.is_available() else 'cpu'
# device = 'cpu'
best_acc = 0  # best test accuracy
start_epoch = 0  # start from epoch 0 or last checkpoint epoch
train_batch_size = 250
test_batch_size = 250

# Data
print('==> Preparing data..')
Example #29
0
def main():

    # Argument parser to select model type
    parser = argparse.ArgumentParser(description="Train a reinforcement learning flight controller.")
    parser.add_argument('-m','--model', help="RL Agent to train on.")
    args = vars(parser.parse_args())

    # Create a Comet experiment with an API key
    experiment = Experiment(api_key="Bq3mQixNCv2jVzq2YBhLdxq9A",
                            project_name="rl-flight-controller", workspace="alexbarnett12",
                            log_env_gpu = False, log_env_cpu = False, log_env_host= False, 
                            log_git_metadata = False, log_git_patch = False)

    # Load training parameters
    cfg = configparser.ConfigParser()
    cfg.read(TRAINING_CONFIG)
    params = cfg["PARAMETERS"]

    # Set training parameters
    learning_rate_max = float(params["learning_rate_max"])
    learning_rate_min = float(params["learning_rate_min"])
    n_steps = int(params["N_steps"])
    noptepochs = int(params["Noptepochs"])
    nminibatches = int(params["Nminibatches"])
    gamma = float(params["Gamma"])
    lam = float(params["Lam"])
    clip = float(params["Clip"])
    ent_coeff = float(params["Ent_coeff"])
    total_timesteps = int(params["Total_timesteps"])

    # Linearly decreasing learning rate (only for PPO2)
    lr_callback = create_lr_callback(learning_rate_max, learning_rate_min)

    # Report hyperparameters to Comet
    hyper_params = {"learning_rate": learning_rate_max, 
                    "steps": n_steps,
                    "epochs": noptepochs,
                    "minibatches": nminibatches,
                    "gamma": gamma,
                    "lambda": lam,
                    "clip_range": clip,
                    "ent_coeff": ent_coeff,
                    "total_timesteps": total_timesteps}
    experiment.log_parameters(hyper_params)

    # You can set the level to logger.DEBUG or logger.WARN if you
    # want to change the amount of output.
    logger.set_level(logger.DEBUG)

    # Create save directory and various save paths
    model_log_dir = create_model_log_dir()
    save_path = "./logs/" + model_log_dir + "/ckpts/"
    best_model_save_path = "./logs/" + model_log_dir + "/best_model/"
    log_path = "./logs/" + model_log_dir + "/results/"
    tensorboard_dir = "./logs/" + model_log_dir + "/tensorboard/"
    model_save_path = "./logs/saved_models/" + model_log_dir

    # Save training and reward params to model directory 
    shutil.copy("./gymfc/reward_params.config", "./logs/" + model_log_dir + "/reward_params.config")
    shutil.copy("./gymfc/training_params.config", "./logs/" + model_log_dir + "/training_params.config")

    # Create a callback to save model checkpoints
    checkpoint_callback = CheckpointCallback(save_freq=100000, save_path=save_path,
                                             name_prefix='rl_model')

    # Create a separate evaluation environment
    #eval_env = gym.make('attitude-fc-v0')

    # Callback to evaluate the model during training
    #eval_callback = EvalCallback(eval_env, best_model_save_path=best_model_save_path,
    #                            log_path=log_path, eval_freq=100000)

    # Create training environment
    env = gym.make('attitude-fc-v0')

    # Callback to add max penalty watchers to Tensorboard
    tb_callback = TensorboardCallback(env)

    # Create the callback list
    #callback = CallbackList([checkpoint_callback, eval_callback, tb_callback])
    callback = CallbackList([checkpoint_callback, tb_callback])
    # RL Agent; Current options are PPO1 or PPO2
    # Note: PPO2 does not work w/o vectorized environments (gymfc is not vectorized)
    if args["model"] == "PPO2":
        print("PPO2!")
        model = PPO2(MlpPolicy, 
                    env,
                    n_steps=n_steps,
                    learning_rate=lr_callback,
                    noptepochs=noptepochs,
                    nminibatches=nminibatches,
                    gamma=gamma,
                    lam=lam,
                    cliprange=clip,
                    ent_coef=ent_coeff,
                    tensorboard_log=tensorboard_dir,
                    policy_kwargs= {layers: [32,32]})
        experiment.add_tag("PPO2")

    else:
        model = PPO1(MlpPolicy,
                     env,
                     timesteps_per_actorbatch=n_steps,
                     optim_stepsize = learning_rate_max,
                     schedule="linear",
                     optim_epochs=noptepochs,
                     optim_batchsize=nminibatches,
                     gamma=gamma,
                     lam=lam,
                     clip_param=clip,
                     entcoeff=ent_coeff,
                     tensorboard_log=tensorboard_dir)
        experiment.add_tag("PPO1")

    # Train the model. Clean up environment on user cancellation
    try:
        model.learn(total_timesteps=total_timesteps, callback=callback)
    except KeyboardInterrupt:
        print("INFO: Ctrl-C caught. Cleaning up...")
        env.close()
        eval_env.close()

    model.save(model_save_path)

    env.close()
    eval_env.close()
import numpy
import matplotlib.pyplot as plt
from comet_ml import Experiment

from mpl_toolkits.mplot3d import Axes3D
from sklearn.covariance import MinCovDet

from src.utils.pvalues import compute_pvalues

experiment = Experiment(project_name="deep-stats-thesis",
                        workspace="stecaron",
                        disabled=False)
experiment.add_tag("simulations_chi2")

# Set distributions parameters
hyper_params = {"N_DIM": 25, "N_OBS": 1000, "NOISE_PRC": 0.01}

# Log experiment parameters
experiment.log_parameters(hyper_params)

MU = numpy.repeat(0, hyper_params["N_DIM"])
SIGMA = numpy.identity(hyper_params["N_DIM"])

# Simulate data
dt = numpy.random.multivariate_normal(mean=MU,
                                      cov=SIGMA,
                                      size=hyper_params["N_OBS"])

# Plot normal data
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')