class CometMLLogger:
    def __init__(self):
        self.experiment = Experiment(api_key="iU4f44llKnowZwmrEo9wfR2ch",
                                     project_name="general",
                                     workspace="yahyaalaamassoud",
                                     log_code=False,
                                     log_graph=False)

    def log_params(self, params: Dict[str, int]):
        self.experiment.log_parameters(params)

    def log_metric(self, metric_name, metric_val, step=None):
        self.experiment.log_metric(metric_name, metric_val, step=step)

    def log_metrics(self, metrics: Dict[str, float], step=None):
        self.experiment.log_metrics(metrics, step=step)

    def log_figure(self, figure_name: str, step: str):
        self.experiment.log_image(image_data=self.__savefig(),
                                  name=figure_name,
                                  step=step,
                                  overwrite=False)

    def __savefig(self):
        buf = io.BytesIO()
        plt.savefig(buf, format='png')
        buf.seek(0)
        return Image.open(io.BytesIO(buf.getvalue()))
Example #2
0
def main():

    hyper_params = {
        "learning_rate": 1,
        "style_weight": 10000,
        "content_weight": 1,
        "n_steps": 300
    }

    experiment = Experiment(api_key="a604AfX0S9Bmt6HdpMHxg9MCI",
                            project_name="style-transfer",
                            workspace="polmonroig")

    experiment.log_parameters(hyper_params)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if torch.cuda.is_available():
        print("Currently using cuda device.")

    # define file paths and directories
    content_images_dir = "content_images/"
    style_images_dir = "style_images/"
    output_images_dir = "output_images/"
    content_image_name = "content_01.png"
    style_image_name = "style_01.jpg"
    output_image_path = join(
        output_images_dir,
        content_image_name.split('.')[0] + "_" +
        style_image_name.split('.')[0] + ".jpg")
    content_image_path = join(content_images_dir, content_image_name)
    style_image_path = join(style_images_dir, style_image_name)

    # define image file manager
    max_shape = (800, 800)
    fileManager = FileManager(content_image_path, style_image_path, device,
                              max_shape)

    # read images
    content_image, style_image = fileManager.read_images()
    input_image = content_image.clone()
    model = ArtNet(device=device)
    output_image = model.train(hyper_params['content_weight'],
                               hyper_params['style_weight'],
                               hyper_params['n_steps'], content_image,
                               style_image, input_image,
                               hyper_params['learning_rate'], experiment)

    fileManager.save_image(output_image, output_image_path)

    experiment.log_image(
        output_image_path,
        content_image_name.split('.')[0] + "_" +
        style_image_name.split('.')[0])
Example #3
0
def upload_images_to_exp(path,
                         exp=None,
                         project_name="climategan-eval",
                         sleep=-1,
                         verbose=0):
    ims = find_images(path)
    end = None
    c = cols()
    if verbose == 1:
        end = "\r"
    if verbose > 1:
        end = "\n"
    if exp is None:
        exp = Experiment(project_name=project_name)
    for im in ims:
        exp.log_image(str(im))
        if verbose > 0:
            if verbose == 1:
                print(" " * (c - 1), end="\r", flush=True)
            print(str(im), end=end, flush=True)
        if sleep > 0:
            time.sleep(sleep)
    return exp
Example #4
0
    policy_loss_sum = torch.cat(policy_loss).sum() / len(policy_loss)
    if i_episode >= params["KLD_DELAY"]:
        policy_loss_sum += params["KLD_WEIGHT"] * KLD

    policy_loss_sum += params["VARIANCE_WEIGHT"] * torch.norm(latent_variance)

    loss_copy = policy_loss_sum.detach().cpu().numpy().copy()
    policy_loss_sum.backward()

    optimizer.step()

    if i_episode % params["CHKP_FREQ"] == 0:
        torch.save(
            policy.state_dict(),
            os.path.join(exp_dir, 'reinforce-' + str(i_episode) + '.pkl'))

        img = np.zeros((params["HEIGHT"], params["WIDTH"] * 3, 3),
                       dtype=np.uint8)
        img[:, :params["WIDTH"], :] = np.around(state_raw * 255, 0)
        img[:, params["WIDTH"]:params["WIDTH"] * 2, :] = np.around(
            next_state * 255, 0)
        diff = np.sum(state_raw - next_state, axis=2) + 2 / 4
        diff = np.dstack((diff, diff, diff))
        img[:, params["WIDTH"] * 2:, :] = np.around((diff) * 255, 0)
        experiment.log_image(img, name="{:04d}".format(i_episode))

    experiment.log_metric("rewards", np.mean(rewards_raw))
    experiment.log_metric("loss", float(loss_copy))
    experiment.log_metric("kld", KLD.item())
Example #5
0
    print("Creating model...")

    # Build model with supplied parameters
    model = models.get_model(model_name, (1, ), len(labels), model_params)
    print("Built model using parameters:")
    for key, value in model_params.items():
        print("{}: {}".format(key, value))

    # Display a model summary and create/save a model graph definition and image
    model.summary()
    model_image_file = os.path.join(output_dir, experiment_name + '_model.png')
    tf.keras.utils.plot_model(model,
                              to_file=model_image_file,
                              show_layer_names=False,
                              show_shapes=True)
    experiment.log_image(model_image_file)

    # Initialise variables
    sess.run(tf.local_variables_initializer())
    sess.run(tf.global_variables_initializer())
    sess.run(tf.tables_initializer())
    tf.keras.backend.set_session(sess)

    # Load initialisation weights if set
    if load_model and init_ckpt_file and os.path.exists(
            os.path.join(checkpoint_dir, init_ckpt_file)):
        model.load_weights(os.path.join(checkpoint_dir, init_ckpt_file))
        print("Loaded model weights from: " + init_ckpt_file)

    # Initialise model checkpointer and early stopping monitor
    checkpointer = check_pointer.Checkpointer(checkpoint_dir,
Example #6
0
class CometMLMonitor(MonitorBase):
    """
    Send scalar data and the graph to https://www.comet.ml.

    Note:
        1. comet_ml requires you to `import comet_ml` before importing tensorflow or tensorpack.
        2. The "automatic output logging" feature of comet_ml will make the training progress bar appear to freeze.
           Therefore the feature is disabled by default.
    """
    def __init__(self, experiment=None, tags=None, **kwargs):
        """
        Args:
            experiment (comet_ml.Experiment): if provided, invalidate all other arguments
            tags (list[str]): experiment tags
            kwargs: arguments used to initialize :class:`comet_ml.Experiment`,
                such as project name, API key, etc.
                Refer to its documentation for details.
        """
        if experiment is not None:
            self._exp = experiment
            assert tags is None and len(kwargs) == 0
        else:
            from comet_ml import Experiment
            kwargs.setdefault(
                'log_code', True
            )  # though it's not functioning, git patch logging requires it
            kwargs.setdefault('auto_output_logging', None)
            self._exp = Experiment(**kwargs)
            if tags is not None:
                self._exp.add_tags(tags)

        self._exp.set_code("Code logging is impossible ...")
        self._exp.log_dependency('tensorpack', __git_version__)

    @property
    def experiment(self):
        """
        The :class:`comet_ml.Experiment` instance.
        """
        return self._exp

    def _before_train(self):
        self._exp.set_model_graph(tf.get_default_graph())

    @HIDE_DOC
    def process_scalar(self, name, val):
        self._exp.log_metric(name, val, step=self.global_step)

    @HIDE_DOC
    def process_image(self, name, val):
        self._exp.set_step(self.global_step)
        for idx, v in enumerate(val):
            log_name = "{}_step{}{}".format(
                name, self.global_step, "_" + str(idx) if len(val) > 1 else "")

            self._exp.log_image(v,
                                image_format="jpeg",
                                name=log_name,
                                image_minmax=(0, 255))

    def _after_train(self):
        self._exp.end()

    def _after_epoch(self):
        self._exp.log_epoch_end(self.epoch_num)
Example #7
0
        experiment.log_metric("train loss", avg_train_loss, step=step)
        experiment.log_metric("train perplexity",
                              avg_train_perplexity,
                              step=step)
        experiment.log_metric("val loss", avg_val_loss, step=step)
        experiment.log_metric("val perplexity", avg_val_perplexity, step=step)

    outfile_loss_plot = "model/loss_plot.png"
    performance_plot(
        train_loss_list,
        val_loss_list,
        outfile=outfile_loss_plot,
        title="Loss vs Epoch",
        ylab="Avg. Batch Loss",
    )

    experiment.log_image(outfile_loss_plot)

    outfile_ppl_plot = "model/ppl_plot.png"
    performance_plot(
        train_ppl_list,
        val_ppl_list,
        outfile=outfile_ppl_plot,
        title="Perplpexity vs Epoch",
        ylab="Avg. Batch Perplexity",
    )

    experiment.log_image(outfile_ppl_plot)

    print("done")
    tmp = df[df['class'] == labels[i]][:1].reset_index()
    path = 'UrbanSound8K/audio/fold{}/{}'.format(tmp['fold'][0], tmp['slice_file_name'][0])
    files[labels[i]] = path
    
fig = plt.figure(figsize=(15,15))
fig.subplots_adjust(hspace=0.4, wspace=0.4)
for i, label in enumerate(labels):
    fn = files[label]
    fig.add_subplot(5, 2, i+1)
    plt.title(label)
    data, sample_rate = librosa.load(fn)
    _ = librosa.display.waveplot(data, sr= sample_rate)
plt.savefig('class_examples.png')

# Log graphic of waveforms to Comet
experiment.log_image('class_examples.png')

# Log audio files to Comet for debugging
for label in labels:
    fn = files[label]
    experiment.log_audio(fn, metadata = {'name': label})

    

audiodata = []
for index, row in df.iterrows():
    fn = 'UrbanSound8K/audio/fold{}/{}'.format(row['fold'], row['slice_file_name'])
    data = read_file_properties(fn)
    audiodata.append(data)

# Convert to dataframe
Example #9
0
        opt)  # regular setup: load and print networks; create schedulers
    # create a website
    web_dir = os.path.join(
        opt.results_dir, opt.name,
        '%s_%s' % (opt.phase, opt.epoch))  # define the website directory
    webpage = html.HTML(
        web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' %
        (opt.name, opt.phase, opt.epoch))
    # test with eval mode. This only affects layers like batchnorm and dropout.
    # For [pix2pix]: we use batchnorm and dropout in the original pix2pix. You can experiment it with and without eval() mode.
    # For [CycleGAN]: It should not affect CycleGAN as CycleGAN uses instancenorm without dropout.
    if opt.eval:
        model.eval()
    for i, data in enumerate(dataset):
        if i >= opt.num_test:  # only apply our model to opt.num_test images.
            break
        model.set_input(data)  # unpack data from data loader
        model.test()  # run inference
        visuals = model.get_current_visuals()  # get image results
        img_path = model.get_image_paths()
        comet_exp.log_image(img_path[0])  # get image paths
        if i % 5 == 0:  # save images to an HTML file
            print('processing (%04d)-th image... %s' % (i, img_path))
        save_images(webpage,
                    visuals,
                    img_path,
                    aspect_ratio=opt.aspect_ratio,
                    width=opt.display_winsize)
    webpage.save()  # save the HTML
    comet_exp.log_asset_folder(webpage.get_image_dir())
            top_n_largest]
        top_n_best_eigen_papers_for_rejection = dim_reduction.components_[
            top_n_smallest]

        shape = (args.width, args.height)
        if args.mode == Mode.RGBBigImage:
            shape = (args.width * 2, args.height * 4, 3)

        acceptance_eigen = [
            paper.reshape(shape)
            for paper in top_n_best_eigen_papers_for_acceptance
        ]
        rejection_eigen = [
            paper.reshape(shape)
            for paper in top_n_best_eigen_papers_for_rejection
        ]

        # Make them into images
        acceptance_eigen = [(paper - paper.min()) / paper.max()
                            for paper in acceptance_eigen]
        rejection_eigen = [(paper - paper.min()) / paper.max()
                           for paper in rejection_eigen]

        for i, acceptance in enumerate(reversed(acceptance_eigen), 1):
            experiment.log_image(acceptance, name=f"{i} - acceptance")

        for i, rejection in enumerate(rejection_eigen, 1):
            experiment.log_image(rejection, name=f"{i} - rejection")

    logger.info(f"Execution time was {time.time() - timestamp} seconds")
class Visualizer():
    """This class includes several functions that can display/save images and print/save logging information.

    It uses a Python library 'visdom' for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images.
    """
    def __init__(self, opt):
        self.opt = opt  # cache the option
        self.display_id = opt.display_id
        self.name = opt.name
        self.log_name = os.path.join(opt.checkpoints_dir, opt.name,
                                     'loss_log.txt')
        self.experiment = Experiment(api_key="PdU8dZ4I54Nlre5Gz4pW6cY0l",
                                     project_name="sketch-pix2pix",
                                     workspace="edolev89")
        self.experiment.set_name('%s_%d' % (opt.name, time.time()))
        self.experiment.log_parameters(vars(opt))

    def display_current_results(self, visuals, epoch):
        """Display current results on visdom; save current results to an HTML file.

        Parameters:
            visuals (OrderedDict) - - dictionary of images to display or save
            epoch (int) - - the current epoch
            save_result (bool) - - if save the current results to an HTML file
        """
        if self.display_id > 0:  # show images in the browser using visdom
            print('logging images...')
            images = [
                util.tensor2im(image_tensor).transpose([2, 0, 1])
                for image_tensor in visuals.values()
            ]

            image_grid_arr = np.concatenate(images, axis=2)
            image_grid_arr_channels_last = np.moveaxis(image_grid_arr, 0, -1)
            image_grid = Image.fromarray(
                np.uint8(image_grid_arr_channels_last), 'RGB')

            self.experiment.log_image(image_grid, name='epoch_%d' % epoch)

    def plot_current_losses(self, epoch, counter_ratio, losses):
        """display the current losses on visdom display: dictionary of error labels and values

        Parameters:
            epoch (int)           -- current epoch
            counter_ratio (float) -- progress (percentage) in the current epoch, between 0 to 1
            losses (OrderedDict)  -- training losses stored in the format of (name, float) pairs
        """
        if counter_ratio == 1.0:
            self.experiment.log_metrics(losses)

    # losses: same format as |losses| of plot_current_losses
    def print_current_losses(self, epoch, iters, losses, t_comp, t_data):
        """print current losses on console; also save the losses to the disk

        Parameters:
            epoch (int) -- current epoch
            iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch)
            losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
            t_comp (float) -- computational time per data point (normalized by batch_size)
            t_data (float) -- data loading time per data point (normalized by batch_size)
        """
        message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (
            epoch, iters, t_comp, t_data)
        for k, v in losses.items():
            message += '%s: %.3f ' % (k, v)

        print(message)  # print the message
        with open(self.log_name, "a") as log_file:
            log_file.write('%s\n' % message)  # save the message
Example #12
0
            if args.plot:
                # Plot prediction images
                fig_filename = plot_dir / imgs_paths[idx].name
                plot_images(
                    fig_filename,
                    img,
                    label,
                    pred,
                    metrics_dict,
                    maps_dict,
                    edge_coherence,
                    pred_edge,
                    label_edge,
                )
                exp.log_image(fig_filename)
            if not args.no_paint:
                masked = img * (1 - pred[..., None])
                flooded = img_as_ubyte(
                    (painted[idx].permute(1, 2, 0).cpu().numpy() + 1) / 2)
                combined = np.concatenate([img, masked, flooded], 1)
                exp.log_image(combined, imgs_paths[idx].name)

            if args.write_metrics:
                pred_out = model_metrics_path / "pred"
                pred_out.mkdir(exist_ok=True)
                imsave(
                    pred_out / f"{imgs_paths[idx].stem}_pred.png",
                    pred.astype(np.uint8),
                )
                for k, v in maps_dict.items():
Example #13
0
experiment.log_confusion_matrix(y_true=y_true,
                                y_predicted=y_pred,
                                labels=list(class_labels.values()),
                                title="Confusion Matrix")

#Predict
predict_tfrecords = glob.glob(
    "/orange/ewhite/b.weinstein/Houston2018/tfrecords/predict/*.tfrecord")
results = model.predict_raster(predict_tfrecords, batch_size=512)
#predicted classes
print(results.label.unique())

predicted_raster = visualize.create_raster(results)
print(np.unique(predicted_raster))
experiment.log_image(name="Prediction",
                     image_data=predicted_raster,
                     image_colormap=visualize.discrete_cmap(20,
                                                            base_cmap="jet"))

#Save as tif for resampling
prediction_path = os.path.join(save_dir, "prediction.tif")
predicted_raster = np.expand_dims(predicted_raster, 0)
resample.create_tif(
    "/home/b.weinstein/DeepTreeAttention/data/processed/20170218_UH_CASI_S4_NAD83.tif",
    filename=prediction_path,
    numpy_array=predicted_raster)
filename = resample.resample(prediction_path)
experiment.log_image(name="Resampled Prediction",
                     image_data=filename,
                     image_colormap=visualize.discrete_cmap(20,
                                                            base_cmap="jet"))
Example #14
0
    print('Test Accuracy : {} %, Loss : {:.4f}'.format(test_acc,
                                                       meanLoss / (i + 1)))

# Logging reults
experiment.log_metric("test_loss", meanLoss / (i + 1), step=epoch)
experiment.log_metric("test_accuracy", acc, step=epoch)

# # plotting graphs (not needed if using comet ml)
# plt.figure()
# x = np.linspace(0,hyper_params["num_epochs"],hyper_params["num_epochs"])
# plt.subplot(1,2,1)
# plt.plot(x,trainLoss)
# plt.plot(x,validLoss)
#
# plt.subplot(1,2,2)
# plt.plot(x,validAcc)
# plt.savefig(path+'/learning_curve.png')
# plt.show()

# Plotting confusion matrix
plt.figure()
cm = confusion_matrix(ground_truth, predictions)
plot_confusion_matrix(cm.astype(np.int64),
                      classes=["None", "w", "q", "e", "w+q", "w+e"],
                      path=".")

experiment.log_image("./confusion_matrix.png")

dict = {"test_acc": test_acc}

experiment.send_notification("finished", "ok tamere", dict)
Example #15
0
        subset='validation')


    #Don't shuffle test set generator so you can index the batches right with predict_gen
    
    test_set = val_set
    print("train data directory set to", str(train_dir))


print("Uploading sample images from image data generator to Comet")
sample_x, sample_y = next(training_set)
for i in range(4):
    img_example= image.array_to_img(sample_x[i])
    img_name = './img_output/example_img_augmentation' + str(i) + '.jpg'
    img_example.save(img_name) 
    experiment.log_image(img_name)

model = get_architecture(model_name=model_name, input_dim_length=input_dim_length, input_dim_width=input_dim_width,num_dense_layers=num_dense_layers,num_dense_nodes=num_dense_nodes,num_class=num_class,dropout_pct=dropout_pct, weights="imagenet")


#model = get_architecture(model_name=model_name, input_dim_width=224, input_dim_length=224,num_dense_layers=0,num_dense_nodes=0,num_class=16,dropout_pct=0.2,weights="imagenet")

#model.summary()
print(str(model_name), "loaded as initial model.")

#optimzer

if optimizer_choice == 'adam':
    #optim = adam
    optim = keras.optimizers.Adam(lr=initial_lr, decay = decay_choice)
elif optimizer_choice == 'rmsprop':
Example #16
0
    results_dir + 'predictions/predictions_result.txt', 'evaluation loss:' +
    str(evaluation_loss) + ' evaluation accuracy:' + str(evaluation_accuracy) +
    ' evaluation dice coef:' + str(evaluation_dice_coef))
make_file_and_write(results_dir + 'description.txt', description)

predicted_masks = model.predict(test_images, 1, verbose=1)
converted_test_images = convert_one_class_images_to_pixel_images_and_save(
    results_dir + 'predictions/images/', test_images, shape=input_shape)
converted_test_masks = convert_multiclass_matirx_masks_to_pixel_masks_and_save(
    results_dir + 'predictions/masks/', test_masks,
    mask_pixel_values_aka_classes)
converted_predicted_masks = convert_multiclass_matirx_masks_to_pixel_masks_and_save(
    results_dir + 'predictions/results/', predicted_masks,
    mask_pixel_values_aka_classes)

plot_model(model,
           to_file=results_dir + 'model_architecture.png',
           show_shapes=True,
           show_layer_names=True,
           rankdir='TB')
experiment.log_image(results_dir + 'model_architecture.png',
                     name='model_architecture.png')
experiment.log_asset(results_dir + 'unet.hdf5', file_name='unet.hdf5')
for index in range(len(test_images)):
    experiment.log_image(converted_test_images[index],
                         name=str(index) + '_test_image')
    experiment.log_image(converted_test_masks[index],
                         name=str(index) + '_test_mask')
    experiment.log_image(converted_predicted_masks[index],
                         name=str(index) + '_predicted_mask')
Example #17
0
            cv2_img = cv2.imread("[filename]")
            cv2_img = cv2.cvtColor(cv2_img, cv2.COLOR_BGR2RGB)
            demo_img = Image.open("[filename]")
            shape = np.array(demo_img)
            shape = shape.shape[:2]
            detections = detect_image(demo_img, opt.img_size, model, device, conf_thres=0.5, nms_thres=0.5)
            if detections is not None:
                # Rescale boxes to original image
                detections = rescale_boxes(detections, opt.img_size, shape)
                unique_labels = detections[:, -1].cpu().unique()
                n_cls_preds = len(unique_labels)
                # Bounding-box colors
                cmap = plt.get_cmap("tab20b")
                colors = [cmap(i) for i in np.linspace(0, 1, 20)]
                bbox_colors = random.sample(colors, n_cls_preds)
                for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
                    classes = ["person", "ball"]
                    print("\t+ Label: %s, Conf: %.5f" % (classes[int(cls_pred)], cls_conf.item()))

                    box_w = x2 - x1
                    box_h = y2 - y1

                    color = bbox_colors[int(np.where(unique_labels == int(cls_pred))[0])]
                    # Create a Rectangle patch
                    # Draw bbox
                    cv2.rectangle(cv2_img, (int(x1), int(y1)), (int(x1+box_w), int(y1+box_h)), color, 4)
                    # Add label
                    cv2.putText(cv2_img, classes[int(cls_pred)], (int(x1), int(y1)), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)
            
            experiment.log_image(cv2_img, name="test_img_{}".format(epoch))
Example #18
0
s_array = np.array(df1)
# %%
def get_class_frequencies():
  positive_freq = s_array.sum(axis=0) / s_array.shape[0]
  negative_freq = np.ones(positive_freq.shape) - positive_freq
  return positive_freq, negative_freq

p,n = get_class_frequencies()
# %%
data = pd.DataFrame({"Class": df1.columns, "Label": "Positive", "Value": p})
data = data.append([{"Class": df1.columns[l], "Label": "Negative", "Value": v} for l, v in enumerate(n)], ignore_index=True)
plt.xticks(rotation=90)
f = sns.barplot(x="Class", y="Value",hue="Label", data=data)
plt.savefig("skewness.png")
experiment.log_image(image_data = 'skewness.png')
# %%
pos_weights = n
neg_weights = p
pos_contribution = p * pos_weights
neg_contribution = n * neg_weights
print(p)
print(n)
print("Weight to be added:  ",pos_contribution)


# %%

data = pd.DataFrame({"Class": df1.columns, "Label": "Positive", "Value": pos_contribution})
data = data.append([{"Class": df1.columns[l], "Label": "Negative", "Value": v} for l, v in enumerate(neg_contribution)], ignore_index=True)
plt.xticks(rotation=90)
if args.resume:
    # Resume from a snapshot
    chainer.serializers.load_npz(args.resume, trainer)

# Get confusion matrix picture before training:
log_confusion_matrix(experiment, model, trainer, 0, 0)

# Run the training
trainer.run()

# Report created images to comet.ml:
## If you want to include a graph made by chainer, you can:
#if args.plot and extensions.PlotReport.available():
#    experiment.log_image('result/loss.png')
#    experiment.log_image('result/accuracy.png')

# Report the graph, as dot language:
(graph, ) = pydot.graph_from_dot_file('result/cg.dot')
graph.write_png('result/cg.png')
experiment.log_image('result/cg.png')
with open("result/cg.dot") as fp:
    desc = fp.readlines()
    experiment.set_model_graph("\n".join(desc))

# Report a URL:
experiment.log_html_url(
    "https://github.com/chainer/chainer/"
    "blob/master/examples/mnist/train_mnist.py",
    label="This MNIST example is based on")
Example #20
0
    print('Model loaded.')

    n_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    log_dict = helpers.flatten_dict(config)
    log_dict.update({'trainable_params': n_params})
    exp.log_parameters(log_dict)

    test_dataset = data.CSVDatasetsMerger(helpers.get_datasets_paths(config, 'test'))
    test_dataloader = DataLoader(test_dataset,
                       batch_size=config['evaluation']['eval_batch_size'],
                       shuffle=False,
                       drop_last=False,
                       num_workers=config['evaluation']['n_eval_workers'],
                       collate_fn=text_proc)

    evaluator = Evaluation(test_dataloader, config)

    print('Testing ...')
    results, assets, image_fns = evaluator.eval_model(model, finished_training=True)
    print('Finished testing. Uploading ...')

    exp.log_metrics(results, step=0, epoch=0)
    [exp.log_asset_data(asset, step=0) for asset in assets]
    [exp.log_image(fn, step=0) for fn in image_fns]

    print('Finished uploading.')




Example #21
0
    'discount_factor': discount_factor,
    'random_process_theta': random_process_args['theta'],
    'log_interval_steps': log_interval_steps,
    'train_data_shape': train_data_df.shape,
    'test_data_shape': test_data_df.shape,
    'dataset_name': dataset_name,
    'device_type': device_type
}

print('Running with params: %s' % str(params))

if log_comet:
    experiment.log_parameters(params)
    experiment.add_tags(comet_tags)
    if plot_stocks:
        experiment.log_image('train_stocks_plot.png', 'train_window_stocks')
        if test_stocks_plot_fig is not None:
            experiment.log_image('test_stocks_plot.png', 'test_window_stocks')

num_stocks = train_data_df.shape[1]
num_states_and_actions = num_stocks

# init DDPG agent
agent = DDPG(num_states_and_actions,
             num_states_and_actions,
             minibatch_size,
             random_process_args,
             learning_rate=learning_rate,
             discount_factor=discount_factor,
             device_type=device_type,
             is_training=True)
    'maker_has_website'
]].corr()
corr.style.background_gradient(cmap='coolwarm', axis=None).set_precision(2)
# Drop self-correlations
dropSelf = numpy.zeros_like(corr)
dropSelf[numpy.triu_indices_from(dropSelf)] = True
# Generate Color Map
colormap = seaborn.diverging_palette(220, 10, as_cmap=True)
# Generate Heat Map, allow annotations and place floats in map
seaborn.heatmap(corr, cmap=colormap, annot=True, fmt=".2f", mask=dropSelf)
# Apply ticks
pyplot.xticks(range(len(corr.columns)), corr.columns)
pyplot.yticks(range(len(corr.columns)), corr.columns)
pyplot.savefig('corrmatrix.png')
experiment.log_image(name='correlation matrix',
                     image_data='corrmatrix.png',
                     image_format='png')

# build train and test sets
cols = [
    'hunter_followers', 'hunter_has_website', 'maker_followers',
    'maker_has_website'
]
X = df[cols]
X_train, X_test, y_train, y_test = train_test_split(X,
                                                    df.is_featured,
                                                    test_size=0.25,
                                                    random_state=seed,
                                                    stratify=df.is_featured)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
Example #23
0
    def train(self):

        # comet_ml
        # Create an experiment
        experiment = Experiment(api_key="B6hzNydshIpZSG2Xi9BDG9gdG",
                                project_name="glow-mnist", workspace="voletiv")
        hparams_dict = self.hparams_dict()
        experiment.log_parameters(hparams_dict)

        # set to training state
        self.graph.train()
        self.global_step = self.loaded_step

        # begin to train
        for epoch in range(self.n_epoches):
            print("epoch", epoch)
            progress = tqdm(self.data_loader)
            for i_batch, batch in enumerate(progress):

                experiment.set_step(self.global_step)

                # update learning rate
                lr = self.lrschedule["func"](global_step=self.global_step,
                                             **self.lrschedule["args"])
                for param_group in self.optim.param_groups:
                    param_group['lr'] = lr
                self.optim.zero_grad()

                # log
                if self.global_step % self.scalar_log_gaps == 0:
                    # self.writer.add_scalar("lr/lr", lr, self.global_step)
                    experiment.log_metrics({"lr": lr, "epoch": epoch+i_batch/len(self.data_loader)})

                # get batch data
                for k in batch:
                    batch[k] = batch[k].to(self.data_device)
                x = batch["x"]
                y = None
                y_onehot = None
                if self.y_condition:
                    if self.y_criterion == "multi-classes":
                        assert "y_onehot" in batch, "multi-classes ask for `y_onehot` (torch.FloatTensor onehot)"
                        y_onehot = batch["y_onehot"]
                    elif self.y_criterion == "single-class":
                        assert "y" in batch, "single-class ask for `y` (torch.LongTensor indexes)"
                        y = batch["y"]
                        y_onehot = thops.onehot(y, num_classes=self.y_classes)

                # at first time, initialize ActNorm
                if self.global_step == 0:
                    self.graph(x[:self.batch_size // len(self.devices), ...],
                               y_onehot[:self.batch_size // len(self.devices), ...] if y_onehot is not None else None)

                # parallel
                if len(self.devices) > 1 and not hasattr(self.graph, "module"):
                    print("[Parallel] move to {}".format(self.devices))
                    self.graph = torch.nn.parallel.DataParallel(self.graph, self.devices, self.devices[0])

                # forward phase
                z, nll, y_logits = self.graph(x=x, y_onehot=y_onehot)

                # loss_generative
                loss_generative = Glow.loss_generative(nll)

                # loss_classes
                loss_classes = 0
                if self.y_condition:
                    loss_classes = (Glow.loss_multi_classes(y_logits, y_onehot)
                                    if self.y_criterion == "multi-classes" else
                                    Glow.loss_class(y_logits, y))

                # total loss
                loss = loss_generative + loss_classes * self.weight_y

                # log
                if self.global_step % self.scalar_log_gaps == 0:
                    # self.writer.add_scalar("loss/loss_generative", loss_generative, self.global_step)
                    experiment.log_metrics({"loss_generative": loss_generative})
                    if self.y_condition:
                        # self.writer.add_scalar("loss/loss_classes", loss_classes, self.global_step)
                        experiment.log_metrics({"loss_classes": loss_classes, "total_loss": loss})

                # backward
                self.graph.zero_grad()
                self.optim.zero_grad()
                loss.backward()

                # operate grad
                if self.max_grad_clip is not None and self.max_grad_clip > 0:
                    torch.nn.utils.clip_grad_value_(self.graph.parameters(), self.max_grad_clip)
                if self.max_grad_norm is not None and self.max_grad_norm > 0:
                    grad_norm = torch.nn.utils.clip_grad_norm_(self.graph.parameters(), self.max_grad_norm)
                    if self.global_step % self.scalar_log_gaps == 0:
                        # self.writer.add_scalar("grad_norm/grad_norm", grad_norm, self.global_step)
                        experiment.log_metrics({"grad_norm": grad_norm})

                # step
                self.optim.step()

                # checkpoints
                if self.global_step % self.checkpoints_gap == 0 and self.global_step > 0:
                    save(global_step=self.global_step,
                         graph=self.graph,
                         optim=self.optim,
                         pkg_dir=self.checkpoints_dir,
                         is_best=True,
                         max_checkpoints=self.max_checkpoints)

                # plot images
                if self.global_step % self.plot_gaps == 0:
                    img = self.graph(z=z, y_onehot=y_onehot, reverse=True)
                    # img = torch.clamp(img, min=0, max=1.0)

                    if self.y_condition:
                        if self.y_criterion == "multi-classes":
                            y_pred = torch.sigmoid(y_logits)
                        elif self.y_criterion == "single-class":
                            y_pred = thops.onehot(torch.argmax(F.softmax(y_logits, dim=1), dim=1, keepdim=True),
                                                  self.y_classes)
                        y_true = y_onehot

                    # plot images
                    # self.writer.add_image("0_reverse/{}".format(bi), torch.cat((img[bi], batch["x"][bi]), dim=1), self.global_step)
                    vutils.save_image(torch.stack([torch.cat((img[bi], batch["x"][bi]), dim=1) for bi in range(min([len(img), self.n_image_samples]))]), '/tmp/vikramvoleti.png', nrow=10)
                    experiment.log_image('/tmp/vikramvoleti_rev.png', file_name="0_reverse")

                    # plot preds
                    # for bi in range(min([len(img), self.n_image_samples])):
                    #     # wandb.log({"0_reverse_{}".format(bi): [wandb.Image(torch.cat((img[bi], batch["x"][bi]), dim=1), caption="0_reverse/{}".format(bi))]}, step=self.global_step)
                    #     if self.y_condition:
                    #         # self.writer.add_image("1_prob/{}".format(bi), plot_prob([y_pred[bi], y_true[bi]], ["pred", "true"]), self.global_step)
                    #         wandb.log({"1_prob_{}".format(bi): [wandb.Image(plot_prob([y_pred[bi], y_true[bi]], ["pred", "true"]))]}, step=self.global_step)

                # inference
                if hasattr(self, "inference_gap"):
                    if self.global_step % self.inference_gap == 0:
                        try:
                            img = self.graph(z=None, y_onehot=inference_y_onehot, eps_std=0.5, reverse=True)
                        except NameError:
                            inference_y_onehot = torch.zeros_like(y_onehot, device=torch.device('cpu'))
                            for i in range(inference_y_onehot.size(0)):
                                inference_y_onehot[i, (i % inference_y_onehot.size(1))] = 1.
                            # now
                            inference_y_onehot = inference_y_onehot.to(y_onehot.device)
                            img = self.graph(z=None, y_onehot=inference_y_onehot, eps_std=0.5, reverse=True)
                        # grid
                        vutils.save_image(img[:min([len(img), self.n_image_samples])], '/tmp/vikramvoleti.png', nrow=10)
                        experiment.log_image('/tmp/vikramvoleti_sam.png', file_name="1_samples")
                        # img = torch.clamp(img, min=0, max=1.0)
                        # for bi in range(min([len(img), n_images])):
                        #     # self.writer.add_image("2_sample/{}".format(bi), img[bi], self.global_step)
                        #     wandb.log({"2_sample_{}".format(bi): [wandb.Image(img[bi])]}, step=self.global_step)

                if self.global_step == 0:
                    subprocess.run('nvidia-smi')

                # global step
                self.global_step += 1
Example #24
0
def training_loop(
    G_args                  = {},       # Options for generator network.
    D_args                  = {},       # Options for discriminator network.
    G_opt_args              = {},       # Options for generator optimizer.
    D_opt_args              = {},       # Options for discriminator optimizer.
    G_loss_args             = {},       # Options for generator loss.
    D_loss_args             = {},       # Options for discriminator loss.
    dataset_args            = {},       # Options for dataset.load_dataset().
    sched_args              = {},       # Options for train.TrainingSchedule.
    grid_args               = {},       # Options for train.setup_snapshot_image_grid().
    metric_arg_list         = [],       # Options for MetricGroup.
    tf_config               = {},       # Options for tflib.init_tf().
    data_dir                = None,     # Directory to load datasets from.
    G_smoothing_kimg        = 10.0,     # Half-life of the running average of generator weights.
    minibatch_repeats       = 4,        # Number of minibatches to run before adjusting training parameters.
    lazy_regularization     = True,     # Perform regularization as a separate training step?
    G_reg_interval          = 4,        # How often the perform regularization for G? Ignored if lazy_regularization=False.
    D_reg_interval          = 16,       # How often the perform regularization for D? Ignored if lazy_regularization=False.
    reset_opt_for_new_lod   = True,     # Reset optimizer internal state (e.g. Adam moments) when new layers are introduced?
    total_kimg              = 25000,    # Total length of the training, measured in thousands of real images.
    mirror_augment          = False,    # Enable mirror augment?
    drange_net              = [-1,1],   # Dynamic range used when feeding image data to the networks.
    image_snapshot_ticks    = 50,       # How often to save image snapshots? None = only save 'reals.png' and 'fakes-init.png'.
    network_snapshot_ticks  = 50,       # How often to save network snapshots? None = only save 'networks-final.pkl'.
    save_tf_graph           = False,    # Include full TensorFlow computation graph in the tfevents file?
    save_weight_histograms  = False,    # Include weight histograms in the tfevents file?
    resume_pkl              = None,     # Network pickle to resume training from, None = train from scratch.
    resume_kimg             = 0.0,      # Assumed training progress at the beginning. Affects reporting and training schedule.
    resume_time             = 0.0,      # Assumed wallclock time at the beginning. Affects reporting.
    resume_with_new_nets    = False):   # Construct new networks according to G_args and D_args before resuming training?

    # Initialize dnnlib and TensorFlow.
    tflib.init_tf(tf_config)
    num_gpus = dnnlib.submit_config.num_gpus
    
    e = Experiment("Your API Key")
    e.log_parameters(params)

    
    

    # Load training set.
    training_set = dataset.load_dataset(data_dir=dnnlib.convert_path(data_dir), verbose=True, **dataset_args)
    grid_size, grid_reals, grid_labels = misc.setup_snapshot_image_grid(training_set, **grid_args)
    misc.save_image_grid(grid_reals, dnnlib.make_run_dir_path('reals.png'), drange=training_set.dynamic_range, grid_size=grid_size)
    
    for i in range(len(training_set))
        e.log_image(training_set[i])

    # Construct or load networks.
    with tf.device('/gpu:0'):
        if resume_pkl is None or resume_with_new_nets:
            print('Constructing networks...')
            G = tflib.Network('G', num_channels=training_set.shape[0], resolution=training_set.shape[1], label_size=training_set.label_size, **G_args)
            D = tflib.Network('D', num_channels=training_set.shape[0], resolution=training_set.shape[1], label_size=training_set.label_size, **D_args)
            Gs = G.clone('Gs')
        if resume_pkl is not None:
            print('Loading networks from "%s"...' % resume_pkl)
            rG, rD, rGs = misc.load_pkl(resume_pkl)
            if resume_with_new_nets: G.copy_vars_from(rG); D.copy_vars_from(rD); Gs.copy_vars_from(rGs)
            else: G = rG; D = rD; Gs = rGs

    # Print layers and generate initial image snapshot.
    G.print_layers(); D.print_layers()
    sched = training_schedule(cur_nimg=total_kimg*1000, training_set=training_set, **sched_args)
    grid_latents = np.random.randn(np.prod(grid_size), *G.input_shape[1:])
    grid_fakes = Gs.run(grid_latents, grid_labels, is_validation=True, minibatch_size=sched.minibatch_gpu)
    misc.save_image_grid(grid_fakes, dnnlib.make_run_dir_path('fakes_init.png'), drange=drange_net, grid_size=grid_size)

    # Setup training inputs.
    print('Building TensorFlow graph...')
    with tf.name_scope('Inputs'), tf.device('/cpu:0'):
        lod_in               = tf.placeholder(tf.float32, name='lod_in', shape=[])
        lrate_in             = tf.placeholder(tf.float32, name='lrate_in', shape=[])
        minibatch_size_in    = tf.placeholder(tf.int32, name='minibatch_size_in', shape=[])
        minibatch_gpu_in     = tf.placeholder(tf.int32, name='minibatch_gpu_in', shape=[])
        minibatch_multiplier = minibatch_size_in // (minibatch_gpu_in * num_gpus)
        Gs_beta              = 0.5 ** tf.div(tf.cast(minibatch_size_in, tf.float32), G_smoothing_kimg * 1000.0) if G_smoothing_kimg > 0.0 else 0.0

    # Setup optimizers.
    G_opt_args = dict(G_opt_args)
    D_opt_args = dict(D_opt_args)
    for args, reg_interval in [(G_opt_args, G_reg_interval), (D_opt_args, D_reg_interval)]:
        args['minibatch_multiplier'] = minibatch_multiplier
        args['learning_rate'] = lrate_in
        if lazy_regularization:
            mb_ratio = reg_interval / (reg_interval + 1)
            args['learning_rate'] *= mb_ratio
            if 'beta1' in args: args['beta1'] **= mb_ratio
            if 'beta2' in args: args['beta2'] **= mb_ratio
    G_opt = tflib.Optimizer(name='TrainG', **G_opt_args)
    D_opt = tflib.Optimizer(name='TrainD', **D_opt_args)
    G_reg_opt = tflib.Optimizer(name='RegG', share=G_opt, **G_opt_args)
    D_reg_opt = tflib.Optimizer(name='RegD', share=D_opt, **D_opt_args)

    # Build training graph for each GPU.
    images = e.log_image(dnnlib.make_run_dir_path('fakes_init.png'), 'Initial Fakes')
    for i in range(len(image))
        e.log_image(images[i])
    data_fetch_ops = []
    for gpu in range(num_gpus):
        with tf.name_scope('GPU%d' % gpu), tf.device('/gpu:%d' % gpu):

            # Create GPU-specific shadow copies of G and D.
            G_gpu = G if gpu == 0 else G.clone(G.name + '_shadow')
            D_gpu = D if gpu == 0 else D.clone(D.name + '_shadow')

            # Fetch training data via temporary variables.
            with tf.name_scope('DataFetch'):
                sched = training_schedule(cur_nimg=int(resume_kimg*1000), training_set=training_set, **sched_args)
                reals_var = tf.Variable(name='reals', trainable=False, initial_value=tf.zeros([sched.minibatch_gpu] + training_set.shape))
                labels_var = tf.Variable(name='labels', trainable=False, initial_value=tf.zeros([sched.minibatch_gpu, training_set.label_size]))
                reals_write, labels_write = training_set.get_minibatch_tf()
                reals_write, labels_write = process_reals(reals_write, labels_write, lod_in, mirror_augment, training_set.dynamic_range, drange_net)
                reals_write = tf.concat([reals_write, reals_var[minibatch_gpu_in:]], axis=0)
                labels_write = tf.concat([labels_write, labels_var[minibatch_gpu_in:]], axis=0)
                data_fetch_ops += [tf.assign(reals_var, reals_write)]
                data_fetch_ops += [tf.assign(labels_var, labels_write)]
                reals_read = reals_var[:minibatch_gpu_in]
                labels_read = labels_var[:minibatch_gpu_in]

            # Evaluate loss functions.
            lod_assign_ops = []
            if 'lod' in G_gpu.vars: lod_assign_ops += [tf.assign(G_gpu.vars['lod'], lod_in)]
            if 'lod' in D_gpu.vars: lod_assign_ops += [tf.assign(D_gpu.vars['lod'], lod_in)]
            with tf.control_dependencies(lod_assign_ops):
                with tf.name_scope('G_loss'):
                    G_loss, G_reg = dnnlib.util.call_func_by_name(G=G_gpu, D=D_gpu, opt=G_opt, training_set=training_set, minibatch_size=minibatch_gpu_in, **G_loss_args)
                with tf.name_scope('D_loss'):
                    D_loss, D_reg = dnnlib.util.call_func_by_name(G=G_gpu, D=D_gpu, opt=D_opt, training_set=training_set, minibatch_size=minibatch_gpu_in, reals=reals_read, labels=labels_read, **D_loss_args)

            # Register gradients.
            if not lazy_regularization:
                if G_reg is not None: G_loss += G_reg
                if D_reg is not None: D_loss += D_reg
            else:
                if G_reg is not None: G_reg_opt.register_gradients(tf.reduce_mean(G_reg * G_reg_interval), G_gpu.trainables)
                if D_reg is not None: D_reg_opt.register_gradients(tf.reduce_mean(D_reg * D_reg_interval), D_gpu.trainables)
            G_opt.register_gradients(tf.reduce_mean(G_loss), G_gpu.trainables)
            D_opt.register_gradients(tf.reduce_mean(D_loss), D_gpu.trainables)
            
    

    # Setup training ops.
    data_fetch_op = tf.group(*data_fetch_ops)
    G_train_op = G_opt.apply_updates()
    D_train_op = D_opt.apply_updates()
    G_reg_op = G_reg_opt.apply_updates(allow_no_op=True)
    D_reg_op = D_reg_opt.apply_updates(allow_no_op=True)
    Gs_update_op = Gs.setup_as_moving_average_of(G, beta=Gs_beta)

    # Finalize graph.
    with tf.device('/gpu:0'):
        try:
            peak_gpu_mem_op = tf.contrib.memory_stats.MaxBytesInUse()
        except tf.errors.NotFoundError:
            peak_gpu_mem_op = tf.constant(0)
    tflib.init_uninitialized_vars()

    print('Initializing logs...')
    summary_log = tf.summary.FileWriter(dnnlib.make_run_dir_path())
    if save_tf_graph:
        summary_log.add_graph(tf.get_default_graph())
    if save_weight_histograms:
        G.setup_weight_histograms(); D.setup_weight_histograms()
    metrics = metric_base.MetricGroup(metric_arg_list)

    print('Training for %d kimg...\n' % total_kimg)
    dnnlib.RunContext.get().update('', cur_epoch=resume_kimg, max_epoch=total_kimg)
    maintenance_time = dnnlib.RunContext.get().get_last_update_interval()
    cur_nimg = int(resume_kimg * 1000)
    cur_tick = -1
    tick_start_nimg = cur_nimg
    prev_lod = -1.0
    running_mb_counter = 0
    while cur_nimg < total_kimg * 1000:
        if dnnlib.RunContext.get().should_stop(): break

        # Choose training parameters and configure training ops.
        sched = training_schedule(cur_nimg=cur_nimg, training_set=training_set, **sched_args)
        assert sched.minibatch_size % (sched.minibatch_gpu * num_gpus) == 0
        training_set.configure(sched.minibatch_gpu, sched.lod)
        if reset_opt_for_new_lod:
            if np.floor(sched.lod) != np.floor(prev_lod) or np.ceil(sched.lod) != np.ceil(prev_lod):
                G_opt.reset_optimizer_state(); D_opt.reset_optimizer_state()
        prev_lod = sched.lod

        # Run training ops.
        feed_dict = {lod_in: sched.lod, lrate_in: sched.G_lrate, minibatch_size_in: sched.minibatch_size, minibatch_gpu_in: sched.minibatch_gpu}
        for _repeat in range(minibatch_repeats):
            rounds = range(0, sched.minibatch_size, sched.minibatch_gpu * num_gpus)
            run_G_reg = (lazy_regularization and running_mb_counter % G_reg_interval == 0)
            run_D_reg = (lazy_regularization and running_mb_counter % D_reg_interval == 0)
            cur_nimg += sched.minibatch_size
            running_mb_counter += 1

            # Fast path without gradient accumulation.
            if len(rounds) == 1:
                tflib.run([G_train_op, data_fetch_op], feed_dict)
                if run_G_reg:
                    tflib.run(G_reg_op, feed_dict)
                tflib.run([D_train_op, Gs_update_op], feed_dict)
                if run_D_reg:
                    tflib.run(D_reg_op, feed_dict)

            # Slow path with gradient accumulation.
            else:
                for _round in rounds:
                    tflib.run(G_train_op, feed_dict)
                if run_G_reg:
                    for _round in rounds:
                        tflib.run(G_reg_op, feed_dict)
                tflib.run(Gs_update_op, feed_dict)
                for _round in rounds:
                    tflib.run(data_fetch_op, feed_dict)
                    tflib.run(D_train_op, feed_dict)
                if run_D_reg:
                    for _round in rounds:
                        tflib.run(D_reg_op, feed_dict)

        # Perform maintenance tasks once per tick.
        done = (cur_nimg >= total_kimg * 1000)
        if cur_tick < 0 or cur_nimg >= tick_start_nimg + sched.tick_kimg * 1000 or done:
            cur_tick += 1
            tick_kimg = (cur_nimg - tick_start_nimg) / 1000.0
            tick_start_nimg = cur_nimg
            tick_time = dnnlib.RunContext.get().get_time_since_last_update()
            total_time = dnnlib.RunContext.get().get_time_since_start() + resume_time

            # Report progress.
            print('tick %-5d kimg %-8.1f lod %-5.2f minibatch %-4d time %-12s sec/tick %-7.1f sec/kimg %-7.2f maintenance %-6.1f gpumem %.1f' % (
                autosummary('Progress/tick', cur_tick),
                autosummary('Progress/kimg', cur_nimg / 1000.0),
                autosummary('Progress/lod', sched.lod),
                autosummary('Progress/minibatch', sched.minibatch_size),
                dnnlib.util.format_time(autosummary('Timing/total_sec', total_time)),
                autosummary('Timing/sec_per_tick', tick_time),
                autosummary('Timing/sec_per_kimg', tick_time / tick_kimg),
                autosummary('Timing/maintenance_sec', maintenance_time),
                autosummary('Resources/peak_gpu_mem_gb', peak_gpu_mem_op.eval() / 2**30)))
            autosummary('Timing/total_hours', total_time / (60.0 * 60.0))
            autosummary('Timing/total_days', total_time / (24.0 * 60.0 * 60.0))
            e.log_dataset_hash(training_set)

            # Save snapshots.
            if image_snapshot_ticks is not None and (cur_tick % image_snapshot_ticks == 0 or done):
                grid_fakes = Gs.run(grid_latents, grid_labels, is_validation=True, minibatch_size=sched.minibatch_gpu)
                misc.save_image_grid(grid_fakes, dnnlib.make_run_dir_path('fakes%06d.png' % (cur_nimg // 1000)), drange=drange_net, grid_size=grid_size)
            if network_snapshot_ticks is not None and (cur_tick % network_snapshot_ticks == 0 or done):
                pkl = dnnlib.make_run_dir_path('network-snapshot-%06d.pkl' % (cur_nimg // 1000))
                misc.save_pkl((G, D, Gs), pkl)
                metrics.run(pkl, run_dir=dnnlib.make_run_dir_path(), data_dir=dnnlib.convert_path(data_dir), num_gpus=num_gpus, tf_config=tf_config)

            # Update summaries and RunContext.
            metrics.update_autosummaries()
            tflib.autosummary.save_summaries(summary_log, cur_nimg)
            dnnlib.RunContext.get().update('%.2f' % sched.lod, cur_epoch=cur_nimg // 1000, max_epoch=total_kimg)
            maintenance_time = dnnlib.RunContext.get().get_last_update_interval() - tick_time

    # Save final snapshot.
    misc.save_pkl((G, D, Gs), dnnlib.make_run_dir_path('network-final.pkl'))
   

    # All done.
    summary_log.close()
    training_set.close()
Example #25
0
    logger.info("Computing Mean Square Error")

    save_imgs_path = _path_sav_fold("completions")
    mse = Database.mean_square_error(mpe_assignment,
                                     unorm_eval_data,
                                     save_imgs_path=save_imgs_path)

    logger.info("MSE: {}".format(mse))
    logger.info("--> Duration: {:.4f}".format(timers.tac()))
    print('{"metric": "MSE", "value": %f}' % (mse))

    # Comet.ml
    if use_comet:
        experiment.log_metric("mse", mse)
        for img_idx in range(unorm_eval_data.shape[0]):
            experiment.log_image("{}/{}.png".format(save_imgs_path, img_idx))

# SAMPLING
elif inference_type == "sampling":

    timers.tic()
    logger.info("Sampling inference.")

    spn_input = spn.inputs_marg
    if backward_masks is None:
        spn_input = spn.inputs
        backward_masks = spn.build_backward_masks(forward,
                                                  sampling_amt=valid_amount)
    sampling_leaf = spn.build_sampling_leaf(backward_masks)

    feed_means_stds = {
Example #26
0
            if "--ground" not in m_path
            else "ground"
        )
        names.append(name)

        is_ground = name == "ground"

        print("#" * 100)
        print("\n>>> Processing", name)
        print()

        outputs = get_or_load_inferences(
            m_path, device, xs, is_ground, im_paths, ground_model, load
        )
        nps = numpify(outputs)

        np_outs[name] = nps

    exp = Experiment(project_name="climategan-inferences", display_summary_level=0)
    exp.log_parameter("names", names)
    exp.add_tags(tags)

    for i in tqdm(range(len(xs))):
        all_models_for_image = []
        for name in names:
            xpmds = concat_npy_for_model(np_outs[name][i], tasks)
            all_models_for_image.append(xpmds)
        full_im = np.concatenate(all_models_for_image, axis=0)
        pil_im = Image.fromarray(full_im)
        exp.log_image(pil_im, name=im_paths[i].stem.replace(".", "_"), step=i)
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(
    dataset=train_dataset,
    batch_size=hyper_params['batch_size'],
    shuffle=False)

test_loader = torch.utils.data.DataLoader(
    dataset=test_dataset, batch_size=hyper_params['batch_size'], shuffle=False)

# Log dataset sample images to Comet
num_samples = len(train_dataset)
for _ in range(10):
    value = random.randint(0, num_samples)
    tmp, _ = train_dataset[value]
    img = tmp.numpy()[0]
    experiment.log_image(img, name="groundtruth:{}".format(_))

# Log hyperparameters to Comet
experiment.log_parameters(hyper_params)


# RNN Model (Many-to-One)
class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, num_classes):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size,
                            hidden_size,
                            num_layers,
                            batch_first=True)
Example #28
0
              experiment,
              attrs,
              save=args.save)
    if args.test:
        test(model, disc, test_loader, experiment, val=False)
    # save every epoch during training instead
    # if args.save:
    #     torch.save(model.state_dict(), './models/model.pt')
    #     torch.save(disc.state_dict(), './models/disc.pt')
    if args.gen:
        generate_image(model,
                       val_loader,
                       experiment,
                       attrs,
                       log=False,
                       show=True,
                       save=True)
    if args.smooth:
        model.eval()
        with torch.no_grad():
            z1 = torch.zeros((hyperparameters["latent_size"])).to(device)
            z2 = 0.01 * torch.ones((hyperparameters["latent_size"])).to(device)
            z3 = 1. * torch.ones((hyperparameters["latent_size"])).to(device)
            z4 = 10. * torch.ones((hyperparameters["latent_size"])).to(device)
            vecs = torch.vstack([z1, z2, z3, z4]).to(device)
            ys = model.decode(vecs)
            experiment.log_image(ys[0].cpu().numpy(), "z_zero")
            experiment.log_image(ys[1].cpu().numpy(), "z_hundredth")
            experiment.log_image(ys[2].cpu().numpy(), "z_one")
            experiment.log_image(ys[3].cpu().numpy(), "z_ten")
Example #29
0
def eval(
    model: LiSSModel,
    dataset: UnalignedDataset,
    exp: Experiment,
    total_iters: int = 0,
    nb_ims: int = 30,
):
    liss = model.opt.model == "liss"
    metrics = {}
    print(f"----------- Evaluation {total_iters} ----------")
    with torch.no_grad():
        data = {
            "translation": {
                "A": {
                    "rec": None,
                    "idt": None,
                    "real": None,
                    "fake": None
                },
                "B": {
                    "rec": None,
                    "idt": None,
                    "real": None,
                    "fake": None
                },
            }
        }
        force = set(["identity", "translation"])
        if liss:
            for t in model.tasks:
                tmp = {}
                if t.eval_visuals_pred or t.log_type == "acc":
                    tmp["pred"] = None
                if t.eval_visuals_target or t.log_type == "acc":
                    tmp["target"] = None
                data[t.key] = {domain: deepcopy(tmp) for domain in "AB"}

            force |= set(model.tasks.keys)

        losses = {
            k: []
            for k in dir(model) if k.startswith("loss_")
            and isinstance(getattr(model, k), torch.Tensor)
        }
        for i, b in enumerate(dataset):
            # print(f"\rEval batch {i}", end="")

            model.set_input(b)
            model.forward(force=force)
            model.backward_G(losses_only=True, force=force)

            for k in dir(model):
                if k.startswith("loss_") and isinstance(
                        getattr(model, k), torch.Tensor):
                    if k not in losses:
                        losses[k] = []
                    losses[k].append(getattr(model, k).detach().cpu().item())

            if liss:

                for t in model.tasks:
                    for domain in "AB":
                        for dtype in data[t.key][domain]:
                            if (t.log_type != "acc"
                                    and data[t.key][domain][dtype] is not None
                                    and
                                    len(data[t.key][domain][dtype]) >= nb_ims):
                                continue

                            v = model.get(
                                f"{domain}_{t.key}_{dtype}").detach().cpu()
                            if data[t.key][domain][dtype] is None:
                                data[t.key][domain][dtype] = v
                            else:
                                data[t.key][domain][dtype] = torch.cat(
                                    [data[t.key][domain][dtype], v],
                                    dim=0,
                                )

            # -------------------------
            # -----  Translation  -----
            # -------------------------
            if (data["translation"]["A"]["real"] is None
                    or len(data["translation"]["A"]["real"]) < nb_ims):
                for domain in "AB":
                    for dtype in ["real", "fake", "rec", "idt"]:
                        dom = domain
                        if dtype in {"fake", "idt"}:
                            dom = swap_domain(domain)
                        v = model.get(f"{dom}_{dtype}").detach().cpu()
                        if data["translation"][domain][dtype] is None:
                            data["translation"][domain][dtype] = v
                        else:
                            data["translation"][domain][dtype] = torch.cat(
                                [data["translation"][domain][dtype], v], dim=0)
                        # print(
                        #     f"{domain} {dtype} {len(data['translation'][domain][dtype])}"
                        # )

    for task in data:
        if task != "translation" and model.tasks[task].log_type != "vis":
            continue
        for domain in data[task]:
            for i, v in data[task][domain].items():
                data[task][domain][i] = torch.cat(list(v[:nb_ims].permute(
                    0, 2, 3, 1)),
                                                  axis=1)

    log_images = int(data["translation"]["A"]["real"].shape[1] /
                     data["translation"]["A"]["real"].shape[0])
    im_size = data["translation"]["A"]["real"].shape[0]

    ims = {"A": None, "B": None}

    data_keys = ["translation"]
    translation_keys = ["real", "fake", "rec", "idt"]
    data_keys += [task for task in data if task not in data_keys]

    for task in data_keys:
        if task != "translation" and model.tasks[task].log_type != "vis":
            continue
        for domain in "AB":
            im_types = (translation_keys if task == "translation" else list(
                data[task][domain].keys()))
            for im_type in im_types:
                v = data[task][domain][im_type].float()
                if task == "depth":
                    v = to_min1_1(v)
                    v = v.repeat((1, 1, 3))
                v = v + 1
                v = v / 2
                if ims[domain] is None:
                    ims[domain] = v
                else:
                    ims[domain] = torch.cat([ims[domain], v], dim=0)

    # ------------------------
    # -----  Comet Logs  -----
    # ------------------------
    for i in range(0, log_images, 5):
        k = i + 5
        exp.log_image(
            ims["A"][:, i * im_size:k * im_size, :].numpy(),
            "test_A_{}_{}_rfcidg".format(i * 5, (i + 1) * 5 - 1),
            step=total_iters,
        )
        exp.log_image(
            ims["B"][:, i * im_size:k * im_size, :].numpy(),
            "test_B_{}_{}_rfcidg".format(i * 5, (i + 1) * 5 - 1),
            step=total_iters,
        )
    if liss:
        test_losses = {
            "test_" + ln: np.mean(losses["loss_" + ln])
            for t in model.tasks for ln in t.loss_names
        }

        test_accs = {
            f"test_G_{domain}_{t.key}_acc":
            np.mean(data[t.key][domain]["pred"].max(-1)[1].numpy() == data[
                t.key][domain]["target"].numpy())
            for domain in "AB" for t in model.tasks if t.log_type == "acc"
        }

        if liss:
            exp.log_metrics(test_losses, step=total_iters)
            exp.log_metrics(test_accs, step=total_iters)

            for t in model.tasks:
                if t.log_type != "acc":
                    continue
                for domain in "AB":
                    target = data[t.key][domain]["target"].numpy()
                    pred = data[t.key][domain]["pred"].numpy()
                    exp.log_confusion_matrix(
                        get_one_hot(target, t.output_dim),
                        pred,
                        file_name=
                        f"confusion_{domain}_{t.key}_{total_iters}.json",
                        title=f"confusion_{domain}_{t.key}_{total_iters}.json",
                    )
            metrics = {k + "_loss": v for k, v in test_losses.items()}
            metrics.update(test_accs)
    print("----------- End Evaluation----------")
    return metrics
Example #30
0
                )
            # Add the transformation in blue overlay
            overlay_flood_mask(
                opt_test.results_dir + "epoch" + str(epoch) + "/val_set/",
                opt_test.results_dir + "epoch" + str(epoch) + "/overlay/",
                prefix="0_",
            )
            print("overlay is saved")

            # add comet ML part where we take the img_paths, overlay and save
            if comet_exp is not None:
                fake_im_list = fake_img(
                    opt_test.results_dir + "epoch" + str(epoch) + "/val_set/"
                )
                for img_path in fake_im_list:
                    comet_exp.log_image(img_path)
                list_img = os.listdir(
                    opt_test.results_dir + "epoch" + str(epoch) + "/overlay/"
                )
                for img_path in list_img:
                    comet_exp.log_image(
                        opt_test.results_dir
                        + "epoch"
                        + str(epoch)
                        + "/overlay/"
                        + img_path
                    )
            print("Inference is done, on validation set")
        # INFERENCE CODE END
        model.update_learning_rate()