def yolo3lite_spp_mobilenetv2_body(inputs, num_anchors, num_classes, alpha=1.0):
    '''Create YOLO_v3 Lite SPP MobileNetV2 model CNN body in keras.'''
    mobilenetv2 = MobileNetV2(input_tensor=inputs, weights='imagenet', include_top=False, alpha=alpha)
    print('backbone layers number: {}'.format(len(mobilenetv2.layers)))

    # input: 416 x 416 x 3
    # out_relu: 13 x 13 x 1280
    # block_13_expand_relu: 26 x 26 x (576*alpha)
    # block_6_expand_relu: 52 x 52 x (192*alpha)

    # f1 :13 x 13 x 1280
    f1 = mobilenetv2.get_layer('out_relu').output
    # f2: 26 x 26 x (576*alpha)
    f2 = mobilenetv2.get_layer('block_13_expand_relu').output
    # f3 : 52 x 52 x (192*alpha)
    f3 = mobilenetv2.get_layer('block_6_expand_relu').output

    f1_channel_num = int(1280*alpha)
    f2_channel_num = int(576*alpha)
    f3_channel_num = int(192*alpha)
    #f1_channel_num = 1024
    #f2_channel_num = 512
    #f3_channel_num = 256

    y1, y2, y3 = yolo3lite_predictions((f1, f2, f3), (f1_channel_num, f2_channel_num, f3_channel_num), num_anchors, num_classes, use_spp=True)

    return Model(inputs = inputs, outputs=[y1,y2,y3])
Example #2
0
def tiny_yolo3_ultralite_mobilenetv2_body(inputs,
                                          num_anchors,
                                          num_classes,
                                          alpha=1.0):
    '''Create Tiny YOLO_v3 Ultra-Lite MobileNetV2 model CNN body in keras.'''
    mobilenetv2 = MobileNetV2(input_tensor=inputs,
                              weights='imagenet',
                              include_top=False,
                              alpha=alpha)
    print('backbone layers number: {}'.format(len(mobilenetv2.layers)))

    # input: 416 x 416 x 3
    # out_relu: 13 x 13 x 1280
    # block_13_expand_relu: 26 x 26 x (576*alpha)
    # block_6_expand_relu: 52 x 52 x (192*alpha)

    # f1 :13 x 13 x 1280
    f1 = mobilenetv2.get_layer('out_relu').output
    # f2: 26 x 26 x (576*alpha)
    f2 = mobilenetv2.get_layer('block_13_expand_relu').output

    f1_channel_num = int(1280 * alpha)
    f2_channel_num = int(576 * alpha)
    #f1_channel_num = 1024
    #f2_channel_num = 512

    y1, y2 = tiny_yolo3_ultralite_predictions(
        (f1, f2), (f1_channel_num, f2_channel_num), num_anchors, num_classes)

    return Model(inputs, [y1, y2])