def yolo3lite_spp_mobilenetv2_body(inputs, num_anchors, num_classes, alpha=1.0): '''Create YOLO_v3 Lite SPP MobileNetV2 model CNN body in keras.''' mobilenetv2 = MobileNetV2(input_tensor=inputs, weights='imagenet', include_top=False, alpha=alpha) print('backbone layers number: {}'.format(len(mobilenetv2.layers))) # input: 416 x 416 x 3 # out_relu: 13 x 13 x 1280 # block_13_expand_relu: 26 x 26 x (576*alpha) # block_6_expand_relu: 52 x 52 x (192*alpha) # f1 :13 x 13 x 1280 f1 = mobilenetv2.get_layer('out_relu').output # f2: 26 x 26 x (576*alpha) f2 = mobilenetv2.get_layer('block_13_expand_relu').output # f3 : 52 x 52 x (192*alpha) f3 = mobilenetv2.get_layer('block_6_expand_relu').output f1_channel_num = int(1280*alpha) f2_channel_num = int(576*alpha) f3_channel_num = int(192*alpha) #f1_channel_num = 1024 #f2_channel_num = 512 #f3_channel_num = 256 y1, y2, y3 = yolo3lite_predictions((f1, f2, f3), (f1_channel_num, f2_channel_num, f3_channel_num), num_anchors, num_classes, use_spp=True) return Model(inputs = inputs, outputs=[y1,y2,y3])
def tiny_yolo3_ultralite_mobilenetv2_body(inputs, num_anchors, num_classes, alpha=1.0): '''Create Tiny YOLO_v3 Ultra-Lite MobileNetV2 model CNN body in keras.''' mobilenetv2 = MobileNetV2(input_tensor=inputs, weights='imagenet', include_top=False, alpha=alpha) print('backbone layers number: {}'.format(len(mobilenetv2.layers))) # input: 416 x 416 x 3 # out_relu: 13 x 13 x 1280 # block_13_expand_relu: 26 x 26 x (576*alpha) # block_6_expand_relu: 52 x 52 x (192*alpha) # f1 :13 x 13 x 1280 f1 = mobilenetv2.get_layer('out_relu').output # f2: 26 x 26 x (576*alpha) f2 = mobilenetv2.get_layer('block_13_expand_relu').output f1_channel_num = int(1280 * alpha) f2_channel_num = int(576 * alpha) #f1_channel_num = 1024 #f2_channel_num = 512 y1, y2 = tiny_yolo3_ultralite_predictions( (f1, f2), (f1_channel_num, f2_channel_num), num_anchors, num_classes) return Model(inputs, [y1, y2])