def run(self): try: self.setup() self.feedback.play('intro').get() if config.getboolean('main', 'emulator'): from gi.repository import Gtk import emulator window = emulator.EmulatorWindow() window.connect('delete-event', Gtk.main_quit) window.show_all() Gtk.main() else: main_loop = GObject.MainLoop() main_loop.run() except KeyboardInterrupt: pass except Exception, e: logger.exception(e) self._play_error() holdoff = config.getfloat('main', 'error_holdoff_time') if holdoff > 0: logger.info('Waiting %.2fs before exiting' % holdoff) time.sleep(holdoff) self.teardown() return 1
def set_config(config): envName = "Environment Values" AHit.goal_x = config.getint(envName, "goal_x") AHit.goal_y = config.getint(envName, "goal_y") AHit.goal_z = config.getint(envName, "goal_z") AHit.shot_off_x = config.getint(envName, "shot_off_x") AHit.shot_off_z = config.getint(envName, "shot_off_z") AHit.magic_vel = config.getfloat(envName, "magic_vel") APosition.magic_vel = config.getfloat(envName, "magic_vel") magic_vel = 0.0043527 AHit.normal_g = config.getfloat(envName, "normal_g") AHit.cutoff_time_to_goal = config.getfloat("Shot Detection", "cutoff_time_to_goal")
def move(self, ms): s = ms/1000.0 dx, dy = self.velocity # obey gravity dy += config.getfloat('Physics','gravity') * s dy = copysign(min(config.getfloat('Physics','terminal_velocity'), abs(dy)), dy) self.velocity = dx,dy dx *= s dy *= s # Hard limit on speed v = ((dx **2) + (dy**2)) ** 0.5 if abs(dy) > 15: debug('woosh') #dx = round(abs(dx) * 15.0 / v) dy = 15 #dy = round(abs(dy) * 15.0 / v) self.displace(dx, dy) self.debug()
def setup(self): self.components = [ Component('feedback', player.FeedbackPlayer, assets_base_path=config.get('feedback_player', 'assets_base_path'), volume=config.getfloat('feedback_player', 'volume')) ] if not config.getboolean('main', 'emulator'): self.components.append(Component('smc', smc.SMC, port=config.get('smc', 'serial_port'))) self.components += [ Component('playlist', playlist.PlaylistFetcher), Component('stations_pool', stationspool.StationsPool, base_url=config.get('stations_pool', 'base_url'), auth_code=get_auth_code()), Component('player', player.StreamPlayer), Component('main_controller', MainController, plumbing=self) ] for component in self.components: component.start() self.__dict__[component.tag] = component.proxy
_path = ''#'/content/drive/My Drive/Colab Notebooks/myblast/' config = configparser.ConfigParser() config.read(_path+'mixed_15720.ini') #gpu_tracker.track() encoder = model.get_encoder(config, "M") discriminator = model.get_discriminator(config) generator = model.get_generator(config) if torch.cuda.is_available(): encoder = encoder.cuda() discriminator = discriminator.cuda() generator = generator.cuda() #classifier = model.get_classifier(config).cuda() #gpu_tracker.track() #optimC = optim.Adam(classifier.parameters(), lr=config.getfloat('training', 'lr')) optimE = optim.Adam(encoder.parameters(), lr=config.getfloat('training', 'lr')*0.01) optimG = optim.Adam(generator.parameters(), lr=config.getfloat('training', 'lr')) optimD = optim.Adam(discriminator.parameters(), lr=config.getfloat('training', 'lr')) ''' Quake_Smart_seq2 = data.read_dataset(_path+"../data/Quake_Smart-seq2/data.h5") Quake_10x = data.read_dataset(_path+"../data/Quake_10x/data.h5") merge = {"A":Quake_Smart_seq2, "B":Quake_10x} mergedexpr, mergedl = data.merge_datasets(merge) s = mergedexpr.sum(axis=1) x = (mergedexpr.T/s).T x = x * 10000 x,y,z,w = data.split_data(x, mergedl, test_size=0.01) ''' Baron_human = data.read_dataset(_path+"../data/Baron_human/data.h5")
from skimage.filters import threshold_mean, threshold_li, threshold_minimum, threshold_otsu from skimage.morphology import convex_hull_object, convex_hull_image from skimage.transform import hough_line from skimage.color import rgb2grey import numpy as np import matplotlib.pyplot as plt from skimage import measure from skimage.measure import moments_hu, moments import config import detect_lines import img_preprocessor config = config.get_default_config() SIDE_LENGTH = config.getint('SIDE_LENGTH') ARROW_THRESHOLD = config.getfloat('ARROW_THRESHOLD') templates = [] templates.append(sk.imread(config.get('TEMPLATE_PATH') + 'top.jpg')) templates.append(sk.imread(config.get('TEMPLATE_PATH') + 'left.jpg')) templates.append(sk.imread(config.get('TEMPLATE_PATH') + 'down.jpg')) templates.append(sk.imread(config.get('TEMPLATE_PATH') + 'right.jpg')) """ Pfeilspitzen erkennen und dessen Mittelpunkte zurückgeben """ def get_arrowheads(img, lines): img = rgb2grey(img) img = skimage.img_as_ubyte(img)
if __name__ == '__main__': #parser.add_argument('-save', type=str, default = './checkpoint/test/', help='place to save') _path = '' #'/content/drive/My Drive/Colab Notebooks/myblast/' config = configparser.ConfigParser() config.read(_path + 'mixed_23341.ini') #gpu_tracker.track() encoder = model.get_encoder(config, "M").cuda() discriminator = model.get_discriminator(config).cuda() generator = model.get_generator(config).cuda() encoder = encoder.cpu() encoder = encoder.cuda() #classifier = model.get_classifier(config).cuda() #gpu_tracker.track() #optimC = optim.Adam(classifier.parameters(), lr=config.getfloat('training', 'lr')) optimE = optim.Adam(encoder.parameters(), lr=config.getfloat('training', 'lr') * 0.01) optimG = optim.Adam(generator.parameters(), lr=config.getfloat('training', 'lr')) optimD = optim.Adam(discriminator.parameters(), lr=config.getfloat('training', 'lr')) Quake_Smart_seq2 = data.read_dataset(_path + "../data/Quake_Smart-seq2/data.h5") Quake_10x = data.read_dataset(_path + "../data/Quake_10x/data.h5") merge = {"A": Quake_Smart_seq2, "B": Quake_10x} mergedexpr, mergedl = data.merge_datasets(merge) s = mergedexpr.sum(axis=1) x = (mergedexpr.T / s).T x = x * 10000 x, y, z, w = data.split_data(x, mergedl, test_size=0.01) '''
def jump_speed(self): if self.tall & self.state: speed = config.getfloat('Physics', 'tall_jump_speed') else: speed = config.getfloat('Physics', 'jump_speed') return speed
def heavy(self): return self.velocity[1] > config.getfloat('Physics','break_speed') and (self.state & self.fat)