Example #1
0
def main(config_path, out_path):
    logger.info('------------Match-LSTM Evaluate--------------')
    logger.info('loading config file...')
    global_config = read_config(config_path)

    # set random seed
    seed = global_config['model']['global']['random_seed']
    torch.manual_seed(seed)

    enable_cuda = global_config['test']['enable_cuda']
    device = torch.device("cuda" if enable_cuda else "cpu")
    if torch.cuda.is_available() and not enable_cuda:
        logger.warning("CUDA is avaliable, you can enable CUDA in config file")
    elif not torch.cuda.is_available() and enable_cuda:
        raise ValueError("CUDA is not abaliable, please unable CUDA in config file")

    torch.no_grad()  # make sure all tensors below have require_grad=False

    logger.info('reading squad dataset...')
    dataset = SquadDataset(global_config)

    logger.info('constructing model...')
    model = MatchLSTMModel(global_config).to(device)
    model.eval()  # let training = False, make sure right dropout

    # load model weight
    logger.info('loading model weight...')
    model_weight_path = global_config['data']['model_path']
    assert os.path.exists(model_weight_path), "not found model weight file on '%s'" % model_weight_path

    weight = torch.load(model_weight_path, map_location=lambda storage, loc: storage)
    if enable_cuda:
        weight = torch.load(model_weight_path, map_location=lambda storage, loc: storage.cuda())
    model.load_state_dict(weight, strict=False)

    # forward
    logger.info('forwarding...')

    enable_char = global_config['model']['encoder']['enable_char']
    batch_size = global_config['test']['batch_size']
    # batch_dev_data = dataset.get_dataloader_dev(batch_size)
    batch_dev_data = list(dataset.get_batch_dev(batch_size))

    # to just evaluate score or write answer to file
    if out_path is None:
        criterion = MyNLLLoss()
        score_em, score_f1, sum_loss = eval_on_model(model=model,
                                                     criterion=criterion,
                                                     batch_data=batch_dev_data,
                                                     epoch=None,
                                                     device=device,
                                                     enable_char=enable_char,
                                                     batch_char_func=dataset.gen_batch_with_char)
        logger.info("test: ave_score_em=%.2f, ave_score_f1=%.2f, sum_loss=%.5f" % (score_em, score_f1, sum_loss))
    else:
        predict_ans = predict_on_model(model=model,
                                       batch_data=batch_dev_data,
                                       device=device,
                                       enable_char=enable_char,
                                       batch_char_func=dataset.gen_batch_with_char,
                                       id_to_word_func=dataset.sentence_id2word)
        samples_id = dataset.get_all_samples_id_dev()
        ans_with_id = dict(zip(samples_id, predict_ans))

        logging.info('writing predict answer to file %s' % out_path)
        with open(out_path, 'w') as f:
            json.dump(ans_with_id, f)

    logging.info('finished.')
Example #2
0
def test(config_path, out_path):
    logger.info('------------MODEL PREDICT--------------')
    logger.info('loading config file...')
    global_config = read_config(config_path)

    # set random seed
    seed = global_config['global']['random_seed']
    torch.manual_seed(seed)

    enable_cuda = global_config['test']['enable_cuda']
    device = torch.device("cuda" if enable_cuda else "cpu")
    if torch.cuda.is_available() and not enable_cuda:
        logger.warning("CUDA is avaliable, you can enable CUDA in config file")
    elif not torch.cuda.is_available() and enable_cuda:
        raise ValueError(
            "CUDA is not abaliable, please unable CUDA in config file")

    torch.set_grad_enabled(
        False)  # make sure all tensors below have require_grad=False,

    logger.info('reading squad dataset...')
    dataset = SquadDataset(global_config)

    logger.info('constructing model...')
    model_choose = global_config['global']['model']
    dataset_h5_path = global_config['data']['dataset_h5']
    if model_choose == 'base':
        model_config = read_config('config/base_model.yaml')
        model = BaseModel(dataset_h5_path, model_config)
    elif model_choose == 'match-lstm':
        model = MatchLSTM(dataset_h5_path)
    elif model_choose == 'match-lstm+':
        model = MatchLSTMPlus(dataset_h5_path)
    elif model_choose == 'r-net':
        model = RNet(dataset_h5_path)
    elif model_choose == 'm-reader':
        model = MReader(dataset_h5_path)
    else:
        raise ValueError('model "%s" in config file not recoginized' %
                         model_choose)

    model = model.to(device)
    model.eval()  # let training = False, make sure right dropout

    # load model weight
    logger.info('loading model weight...')
    model_weight_path = global_config['data']['model_path']
    assert os.path.exists(
        model_weight_path
    ), "not found model weight file on '%s'" % model_weight_path

    weight = torch.load(model_weight_path,
                        map_location=lambda storage, loc: storage)
    if enable_cuda:
        weight = torch.load(model_weight_path,
                            map_location=lambda storage, loc: storage.cuda())
    model.load_state_dict(weight, strict=False)

    # forward
    logger.info('forwarding...')

    batch_size = global_config['test']['batch_size']

    num_workers = global_config['global']['num_data_workers']
    batch_dev_data = dataset.get_dataloader_dev(batch_size, num_workers)

    # to just evaluate score or write answer to file
    if out_path is None:
        criterion = MyNLLLoss()
        score_em, score_f1, sum_loss = eval_on_model(model=model,
                                                     criterion=criterion,
                                                     batch_data=batch_dev_data,
                                                     epoch=None,
                                                     device=device)
        logger.info(
            "test: ave_score_em=%.2f, ave_score_f1=%.2f, sum_loss=%.5f" %
            (score_em, score_f1, sum_loss))
    else:
        context_right_space = dataset.get_all_ct_right_space_dev()
        predict_ans = predict_on_model(
            model=model,
            batch_data=batch_dev_data,
            device=device,
            id_to_word_func=dataset.sentence_id2word,
            right_space=context_right_space)
        samples_id = dataset.get_all_samples_id_dev()
        ans_with_id = dict(zip(samples_id, predict_ans))

        logging.info('writing predict answer to file %s' % out_path)
        with open(out_path, 'w') as f:
            json.dump(ans_with_id, f)

    logging.info('finished.')
Example #3
0
def test(config_path, out_path):
    logger.info('------------MODEL PREDICT--------------')
    logger.info('loading config file...')
    global_config = read_config(config_path)

    # set random seed
    seed = global_config['global']['random_seed']
    torch.manual_seed(seed)

    enable_cuda = global_config['test']['enable_cuda']
    device = torch.device("cuda" if enable_cuda else "cpu")
    if torch.cuda.is_available() and not enable_cuda:
        logger.warning("CUDA is avaliable, you can enable CUDA in config file")
    elif not torch.cuda.is_available() and enable_cuda:
        raise ValueError("CUDA is not abaliable, please unable CUDA in config file")

    torch.set_grad_enabled(False)  # make sure all tensors below have require_grad=False,

    logger.info('reading squad dataset...')
    dataset = SquadDataset(global_config)

    logger.info('constructing model...')
    model_choose = global_config['global']['model']
    dataset_h5_path = global_config['data']['dataset_h5']
    if model_choose == 'base':
        model_config = read_config('config/base_model.yaml')
        model = BaseModel(dataset_h5_path,
                          model_config)
    elif model_choose == 'match-lstm':
        model = MatchLSTM(dataset_h5_path)
    elif model_choose == 'match-lstm+':
        model = MatchLSTMPlus(dataset_h5_path)
    elif model_choose == 'r-net':
        model = RNet(dataset_h5_path)
    elif model_choose == 'm-reader':
        model = MReader(dataset_h5_path)
    else:
        raise ValueError('model "%s" in config file not recoginized' % model_choose)

    model = model.to(device)
    model.eval()  # let training = False, make sure right dropout

    # load model weight
    logger.info('loading model weight...')
    model_weight_path = global_config['data']['model_path']
    assert os.path.exists(model_weight_path), "not found model weight file on '%s'" % model_weight_path

    weight = torch.load(model_weight_path, map_location=lambda storage, loc: storage)
    if enable_cuda:
        weight = torch.load(model_weight_path, map_location=lambda storage, loc: storage.cuda())
    model.load_state_dict(weight, strict=False)

    # forward
    logger.info('forwarding...')

    batch_size = global_config['test']['batch_size']

    num_workers = global_config['global']['num_data_workers']
    batch_dev_data = dataset.get_dataloader_dev(batch_size, num_workers)

    # to just evaluate score or write answer to file
    if out_path is None:
        criterion = MyNLLLoss()
        score_em, score_f1, sum_loss = eval_on_model(model=model,
                                                     criterion=criterion,
                                                     batch_data=batch_dev_data,
                                                     epoch=None,
                                                     device=device)
        logger.info("test: ave_score_em=%.2f, ave_score_f1=%.2f, sum_loss=%.5f" % (score_em, score_f1, sum_loss))
    else:
        context_right_space = dataset.get_all_ct_right_space_dev()
        predict_ans = predict_on_model(model=model,
                                       batch_data=batch_dev_data,
                                       device=device,
                                       id_to_word_func=dataset.sentence_id2word,
                                       right_space=context_right_space)
        samples_id = dataset.get_all_samples_id_dev()
        ans_with_id = dict(zip(samples_id, predict_ans))

        logging.info('writing predict answer to file %s' % out_path)
        with open(out_path, 'w') as f:
            json.dump(ans_with_id, f)

    logging.info('finished.')