Example #1
0
def main(config_path):
    logger.info('------------Match-LSTM Train--------------')
    logger.info('loading config file...')
    global_config = read_config(config_path)

    # set random seed
    seed = global_config['model']['global']['random_seed']
    torch.manual_seed(seed)

    enable_cuda = global_config['train']['enable_cuda']
    device = torch.device("cuda" if enable_cuda else "cpu")
    if torch.cuda.is_available() and not enable_cuda:
        logger.warning("CUDA is avaliable, you can enable CUDA in config file")
    elif not torch.cuda.is_available() and enable_cuda:
        raise ValueError("CUDA is not abaliable, please unable CUDA in config file")

    logger.info('reading squad dataset...')
    dataset = SquadDataset(global_config)

    logger.info('constructing model...')
    model = MatchLSTMModel(global_config).to(device)
    criterion = MyNLLLoss()

    # optimizer
    optimizer_choose = global_config['train']['optimizer']
    optimizer_lr = global_config['train']['learning_rate']
    optimizer_param = filter(lambda p: p.requires_grad, model.parameters())

    if optimizer_choose == 'adamax':
        optimizer = optim.Adamax(optimizer_param)
    elif optimizer_choose == 'adadelta':
        optimizer = optim.Adadelta(optimizer_param)
    elif optimizer_choose == 'adam':
        optimizer = optim.Adam(optimizer_param)
    elif optimizer_choose == 'sgd':
        optimizer = optim.SGD(optimizer_param,
                              lr=optimizer_lr)
    else:
        raise ValueError('optimizer "%s" in config file not recoginized' % optimizer_choose)

    # check if exist model weight
    weight_path = global_config['data']['model_path']
    if os.path.exists(weight_path):
        logger.info('loading existing weight...')
        weight = torch.load(weight_path, map_location=lambda storage, loc: storage)
        if enable_cuda:
            weight = torch.load(weight_path, map_location=lambda storage, loc: storage.cuda())
        # weight = pop_dict_keys(weight, ['pointer', 'init_ptr_hidden'])  # partial initial weight
        model.load_state_dict(weight, strict=False)

    # training arguments
    logger.info('start training...')
    train_batch_size = global_config['train']['batch_size']
    valid_batch_size = global_config['train']['valid_batch_size']

    # batch_train_data = dataset.get_dataloader_train(train_batch_size)
    # batch_dev_data = dataset.get_dataloader_dev(valid_batch_size)
    batch_train_data = list(dataset.get_batch_train(train_batch_size))
    batch_dev_data = list(dataset.get_batch_dev(valid_batch_size))

    clip_grad_max = global_config['train']['clip_grad_norm']
    enable_char = global_config['model']['encoder']['enable_char']

    best_valid_f1 = None
    # every epoch
    for epoch in range(global_config['train']['epoch']):
        # train
        model.train()  # set training = True, make sure right dropout
        sum_loss = train_on_model(model=model,
                                  criterion=criterion,
                                  optimizer=optimizer,
                                  batch_data=batch_train_data,
                                  epoch=epoch,
                                  clip_grad_max=clip_grad_max,
                                  device=device,
                                  enable_char=enable_char,
                                  batch_char_func=dataset.gen_batch_with_char)
        logger.info('epoch=%d, sum_loss=%.5f' % (epoch, sum_loss))

        # evaluate
        with torch.no_grad():
            model.eval()  # let training = False, make sure right dropout
            valid_score_em, valid_score_f1, valid_loss = eval_on_model(model=model,
                                                                       criterion=criterion,
                                                                       batch_data=batch_dev_data,
                                                                       epoch=epoch,
                                                                       device=device,
                                                                       enable_char=enable_char,
                                                                       batch_char_func=dataset.gen_batch_with_char)
        logger.info("epoch=%d, ave_score_em=%.2f, ave_score_f1=%.2f, sum_loss=%.5f" %
                    (epoch, valid_score_em, valid_score_f1, valid_loss))

        # save model when best f1 score
        if best_valid_f1 is None or valid_score_f1 > best_valid_f1:
            save_model(model,
                       epoch=epoch,
                       model_weight_path=global_config['data']['model_path'],
                       checkpoint_path=global_config['data']['checkpoint_path'])
            logger.info("saving model weight on epoch=%d" % epoch)
            best_valid_f1 = valid_score_f1

    logger.info('finished.')
Example #2
0
def main(config_path, out_path):
    logger.info('------------Match-LSTM Evaluate--------------')
    logger.info('loading config file...')
    global_config = read_config(config_path)

    # set random seed
    seed = global_config['model']['global']['random_seed']
    torch.manual_seed(seed)

    enable_cuda = global_config['test']['enable_cuda']
    device = torch.device("cuda" if enable_cuda else "cpu")
    if torch.cuda.is_available() and not enable_cuda:
        logger.warning("CUDA is avaliable, you can enable CUDA in config file")
    elif not torch.cuda.is_available() and enable_cuda:
        raise ValueError("CUDA is not abaliable, please unable CUDA in config file")

    torch.no_grad()  # make sure all tensors below have require_grad=False

    logger.info('reading squad dataset...')
    dataset = SquadDataset(global_config)

    logger.info('constructing model...')
    model = MatchLSTMModel(global_config).to(device)
    model.eval()  # let training = False, make sure right dropout

    # load model weight
    logger.info('loading model weight...')
    model_weight_path = global_config['data']['model_path']
    assert os.path.exists(model_weight_path), "not found model weight file on '%s'" % model_weight_path

    weight = torch.load(model_weight_path, map_location=lambda storage, loc: storage)
    if enable_cuda:
        weight = torch.load(model_weight_path, map_location=lambda storage, loc: storage.cuda())
    model.load_state_dict(weight, strict=False)

    # forward
    logger.info('forwarding...')

    enable_char = global_config['model']['encoder']['enable_char']
    batch_size = global_config['test']['batch_size']
    # batch_dev_data = dataset.get_dataloader_dev(batch_size)
    batch_dev_data = list(dataset.get_batch_dev(batch_size))

    # to just evaluate score or write answer to file
    if out_path is None:
        criterion = MyNLLLoss()
        score_em, score_f1, sum_loss = eval_on_model(model=model,
                                                     criterion=criterion,
                                                     batch_data=batch_dev_data,
                                                     epoch=None,
                                                     device=device,
                                                     enable_char=enable_char,
                                                     batch_char_func=dataset.gen_batch_with_char)
        logger.info("test: ave_score_em=%.2f, ave_score_f1=%.2f, sum_loss=%.5f" % (score_em, score_f1, sum_loss))
    else:
        predict_ans = predict_on_model(model=model,
                                       batch_data=batch_dev_data,
                                       device=device,
                                       enable_char=enable_char,
                                       batch_char_func=dataset.gen_batch_with_char,
                                       id_to_word_func=dataset.sentence_id2word)
        samples_id = dataset.get_all_samples_id_dev()
        ans_with_id = dict(zip(samples_id, predict_ans))

        logging.info('writing predict answer to file %s' % out_path)
        with open(out_path, 'w') as f:
            json.dump(ans_with_id, f)

    logging.info('finished.')