def test_all(self): rawData = test_data.rawData idx = rawData.quantile(.99).sort_values(ascending=False).index[0:900] rawData = rawData[idx] hyperparams = { "layers": [ { "label": "dense", "activation": "relu", "nb_neurons": 150 }, { "label": "dropout", "activation": "dropout", "rate": 0.2 }, { "label": "dense", "activation": "relu" }, ], "loss": "wMSE", "optimizer": "Adam", "dims": [20, 500], "preproc": "log_or_exp", "seed": 1, "ncores": 4, } model = MultiNet(**hyperparams) model.fit(rawData) _ = model.predict(rawData) print(model.score(rawData))
def test_all(self): rawData = test_data.rawData idx = rawData.quantile(.99).sort_values(ascending=False).index[0:900] rawData = rawData[idx] hyperparams = { 'layers': [{ 'label': 'dense', 'activation': 'relu', 'nb_neurons': 150 }, { 'label': 'dropout', 'activation': 'dropout', 'rate': 0.2 }, { 'label': 'dense', 'activation': 'relu' }], 'loss': 'mean_squared_error', 'optimizer': 'AdamOptimizer', 'dims': [20, 500], 'preproc': 'log_or_exp', 'seed': 1, 'ncores': 4 } model = MultiNet(**hyperparams) model.fit(rawData) _ = model.predict(rawData) print(model.score(rawData))