def test_all(self):
        rawData = test_data.rawData
        idx = rawData.quantile(.99).sort_values(ascending=False).index[0:900]
        rawData = rawData[idx]

        hyperparams = {
            "layers": [
                {
                    "label": "dense",
                    "activation": "relu",
                    "nb_neurons": 150
                },
                {
                    "label": "dropout",
                    "activation": "dropout",
                    "rate": 0.2
                },
                {
                    "label": "dense",
                    "activation": "relu"
                },
            ],
            "loss":
            "wMSE",
            "optimizer":
            "Adam",
            "dims": [20, 500],
            "preproc":
            "log_or_exp",
            "seed":
            1,
            "ncores":
            4,
        }

        model = MultiNet(**hyperparams)
        model.fit(rawData)
        _ = model.predict(rawData)

        print(model.score(rawData))
Exemple #2
0
    def test_all(self):
        rawData = test_data.rawData
        idx = rawData.quantile(.99).sort_values(ascending=False).index[0:900]
        rawData = rawData[idx]

        hyperparams = {
            'layers': [{
                'label': 'dense',
                'activation': 'relu',
                'nb_neurons': 150
            }, {
                'label': 'dropout',
                'activation': 'dropout',
                'rate': 0.2
            }, {
                'label': 'dense',
                'activation': 'relu'
            }],
            'loss':
            'mean_squared_error',
            'optimizer':
            'AdamOptimizer',
            'dims': [20, 500],
            'preproc':
            'log_or_exp',
            'seed':
            1,
            'ncores':
            4
        }

        model = MultiNet(**hyperparams)
        model.fit(rawData)
        _ = model.predict(rawData)

        print(model.score(rawData))