Example #1
0
def saliency():
	
	"""
	Plots avg LPs simulation
	"""
	
	fig = plt.figure(figsize = (1.5,4))
	
	dm = DataMatrix(np.load(".cache/dm_sim_select_driftcorr.npy"))

	# PLOT SIMULATED SACCADES:
	for stimType in dm.unique("stim_type"):
		
		if stimType == "object":
			col = green[1]
		elif stimType == "non-object":
			col = red[1]
		
		lSacc = []
		for sacc in [1,2]:
			stimDm = dm.select("stim_type == '%s'" % stimType)
		
			m = stimDm["xNorm%s" % sacc].mean()
			lSacc.append(m)
			
		plt.plot([1,2], lSacc, color = col, marker = 'o', markerfacecolor = 'white',
			markeredgecolor = col, markeredgewidth = 1)
	# HACK:
	# PLOT REAL LPs:
	for stimType in dm.unique("stim_type"):
		
		if stimType == "object":
			col = blue[1]
		elif stimType == "non-object":
			col = orange[1]
		
		lSacc = []
		for sacc in [1,2]:
			stimDm = dm.select("stim_type == '%s'" % stimType)
		
			m = stimDm["xNorm%s" % sacc].mean()
			lSacc.append(m)
			
		plt.plot([1,2], lSacc, color = col, marker = 'o', markerfacecolor = 'white',
			markeredgecolor = col, markeredgewidth = 1, label = stimType)
	
	plt.axhline(0, linestyle = "--", color = gray[3])
	plt.ylim(-.3, .07)
	plt.xlim(0.8, 2.2)
	plt.legend(frameon = False)
	plt.savefig("./plots/simulation.png")
	plt.savefig("./plots/simulation.svg")
Example #2
0
from exparser.DataMatrix import DataMatrix
import numpy as np


f = ".cache/004C_lat_driftcorr_False.npy"
dm = DataMatrix(np.load(f))

for pp in dm.unique("file"):
	ppDm = dm.select("file == '%s'" % pp, verbose = False)
	_ppDm = ppDm.select("xNorm1 == -1000", verbose = False)
	print pp, float(len(_ppDm))/float(len(ppDm))
Example #3
0
			mDev = gapDm['xNorm%s' % sacc].mean()
			d[stimType, sacc]= mDev
	
	return d

if __name__ == "__main__":
	
	dm = dmSim(cacheId = "dm_sim_raw")
	dm = addCommonFactors.addCommonFactors(dm, \
		cacheId = "dm_sim_common_factors")
	dm = addCoord.addCoord(dm, cacheId = "dm_sim_coord")
	#dm = addLat.addLat(dm, cacheId = "dm_sim_lat_driftcorr")
	dm = selectDm.selectDm(dm, cacheId = "dm_sim_select_driftcorr")
	
	f = ".cache/dm_sim_select_driftcorr.npy"
	dm = DataMatrix(np.load(f))
	
	fig = plt.figure()
	nPlot = 0
	for stimType in dm.unique("stim_type"):
		stimDm = dm.select("stim_type == '%s'" % stimType)
		
		for sacc in (1,2):
			nPlot +=1
			plt.subplot(2,2,nPlot)
			dv = "xNorm%s" % sacc
			plt.title("%s sacc %s" % (stimType, sacc))
			plt.hist(stimDm[dv], bins = 5)
	plt.savefig("Distribution_simulated_saccades.png")