Example #1
0
    def fit(self, lambda_user=10, lambda_item=25):

        self.lambda_user = lambda_user
        self.lambda_item = lambda_item
        self.n_items = self.URM_train.shape[1]

        # convert to csc matrix for faster column-wise sum
        self.URM_train = check_matrix(self.URM_train, 'csc', dtype=np.float32)

        # 1) global average
        self.mu = self.URM_train.data.sum(
            dtype=np.float32) / self.URM_train.data.shape[0]

        # 2) item average bias
        # compute the number of non-zero elements for each column
        col_nnz = np.diff(self.URM_train.indptr)

        # it is equivalent to:
        # col_nnz = X.indptr[1:] - X.indptr[:-1]
        # and it is **much faster** than
        # col_nnz = (X != 0).sum(axis=0)

        URM_train_unbiased = self.URM_train.copy()
        URM_train_unbiased.data -= self.mu
        self.item_bias = URM_train_unbiased.sum(axis=0) / (col_nnz +
                                                           self.lambda_item)
        self.item_bias = np.asarray(self.item_bias).ravel(
        )  # converts 2-d matrix to 1-d array without anycopy

        # 3) user average bias
        # NOTE: the user bias is *useless* for the sake of ranking items. We just show it here for educational purposes.

        # first subtract the item biases from each column
        # then repeat each element of the item bias vector a number of times equal to col_nnz
        # and subtract it from the data vector
        URM_train_unbiased.data -= np.repeat(self.item_bias, col_nnz)

        # now convert the csc matrix to csr for efficient row-wise computation
        URM_train_unbiased_csr = URM_train_unbiased.tocsr()
        row_nnz = np.diff(URM_train_unbiased_csr.indptr)
        # finally, let's compute the bias
        self.user_bias = URM_train_unbiased_csr.sum(
            axis=1).ravel() / (row_nnz + self.lambda_user)

        # 4) precompute the item ranking by using the item bias only
        # the global average and user bias won't change the ranking, so there is no need to use them
        #self.item_ranking = np.argsort(self.bi)[::-1]

        self.URM_train = check_matrix(self.URM_train, 'csr', dtype=np.float32)
    def applyPearsonCorrelation(self):
        """
        Remove from every data point the average for the corresponding column
        :return:
        """

        self.dataMatrix = check_matrix(self.dataMatrix, 'csc')


        interactionsPerCol = np.diff(self.dataMatrix.indptr)

        nonzeroCols = interactionsPerCol > 0
        sumPerCol = np.asarray(self.dataMatrix.sum(axis=0)).ravel()

        colAverage = np.zeros_like(sumPerCol)
        colAverage[nonzeroCols] = sumPerCol[nonzeroCols] / interactionsPerCol[nonzeroCols]


        # Split in blocks to avoid duplicating the whole data structure
        start_col = 0
        end_col= 0

        blockSize = 1000


        while end_col < self.n_columns:

            end_col = min(self.n_columns, end_col + blockSize)

            self.dataMatrix.data[self.dataMatrix.indptr[start_col]:self.dataMatrix.indptr[end_col]] -= \
                np.repeat(colAverage[start_col:end_col], interactionsPerCol[start_col:end_col])

            start_col += blockSize
    def applyAdjustedCosine(self):
        """
        Remove from every data point the average for the corresponding row
        :return:
        """

        self.dataMatrix = check_matrix(self.dataMatrix, 'csr')


        interactionsPerRow = np.diff(self.dataMatrix.indptr)

        nonzeroRows = interactionsPerRow > 0
        sumPerRow = np.asarray(self.dataMatrix.sum(axis=1)).ravel()

        rowAverage = np.zeros_like(sumPerRow)
        rowAverage[nonzeroRows] = sumPerRow[nonzeroRows] / interactionsPerRow[nonzeroRows]


        # Split in blocks to avoid duplicating the whole data structure
        start_row = 0
        end_row= 0

        blockSize = 1000


        while end_row < self.n_rows:

            end_row = min(self.n_rows, end_row + blockSize)

            self.dataMatrix.data[self.dataMatrix.indptr[start_row]:self.dataMatrix.indptr[end_row]] -= \
                np.repeat(rowAverage[start_row:end_row], interactionsPerRow[start_row:end_row])

            start_row += blockSize
def remove_empty_rows_and_cols(URM, ICM=None):

    URM = check_matrix(URM, "csr")
    rows = URM.indptr
    numRatings = np.ediff1d(rows)
    user_mask = numRatings >= 1

    URM = URM[user_mask, :]

    cols = URM.tocsc().indptr
    numRatings = np.ediff1d(cols)
    item_mask = numRatings >= 1

    URM = URM[:, item_mask]

    removedUsers = np.arange(0, len(user_mask))[np.logical_not(user_mask)]
    removedItems = np.arange(0, len(item_mask))[np.logical_not(item_mask)]

    if ICM is not None:

        ICM = ICM[item_mask, :]

        return URM.tocsr(), ICM.tocsr(), removedUsers, removedItems

    return URM.tocsr(), removedUsers, removedItems
Example #5
0
    def __init__(self, URM_train, verbose=True):

        super(BaseRecommender, self).__init__()

        self.URM_train = check_matrix(URM_train.copy(),
                                      'csr',
                                      dtype=np.float32)
        self.URM_train.eliminate_zeros()

        self.n_users, self.n_items = self.URM_train.shape
        self.verbose = verbose

        self.filterTopPop = False
        self.filterTopPop_ItemsID = np.array([], dtype=np.int)

        self.items_to_ignore_flag = False
        self.items_to_ignore_ID = np.array([], dtype=np.int)

        self._cold_user_mask = np.ediff1d(self.URM_train.indptr) == 0

        if self._cold_user_mask.any():
            self._print("URM Detected {} ({:.2f} %) cold users.".format(
                self._cold_user_mask.sum(),
                self._cold_user_mask.sum() / self.n_users * 100))

        self._cold_item_mask = np.ediff1d(self.URM_train.tocsc().indptr) == 0

        if self._cold_item_mask.any():
            self._print("URM Detected {} ({:.2f} %) cold items.".format(
                self._cold_item_mask.sum(),
                self._cold_item_mask.sum() / self.n_items * 100))
    def __init__(self, URM_recommendations_items):
        super(PredefinedListRecommender, self).__init__()

        # convert to csc matrix for faster column-wise sum
        self.URM_recommendations = check_matrix(URM_recommendations_items,
                                                'csr',
                                                dtype=np.int)

        self.URM_train = sps.csr_matrix((self.URM_recommendations.shape))
def remove_features(ICM,
                    min_occurrence=5,
                    max_percentage_occurrence=0.30,
                    reconcile_mapper=None):
    """
    The function eliminates the values associated to feature occurring in less than the minimal percentage of items
    or more then the max. Shape of ICM is reduced deleting features.
    :param ICM:
    :param minPercOccurrence:
    :param max_percentage_occurrence:
    :param reconcile_mapper: DICT mapper [token] -> index
    :return: ICM
    :return: deletedFeatures
    :return: DICT mapper [token] -> index
    """

    ICM = check_matrix(ICM, 'csc')

    n_items = ICM.shape[0]

    cols = ICM.indptr
    numOccurrences = np.ediff1d(cols)

    feature_mask = np.logical_and(
        numOccurrences >= min_occurrence,
        numOccurrences <= n_items * max_percentage_occurrence)

    ICM = ICM[:, feature_mask]

    deletedFeatures = np.arange(
        0, len(feature_mask))[np.logical_not(feature_mask)]

    print(
        "RemoveFeatures: removed {} features with less then {} occurrences, removed {} features with more than {} occurrencies"
        .format(sum(numOccurrences < min_occurrence), min_occurrence,
                sum(numOccurrences > n_items * max_percentage_occurrence),
                int(n_items * max_percentage_occurrence)))

    if reconcile_mapper is not None:
        reconcile_mapper = reconcile_mapper_with_removed_tokens(
            reconcile_mapper, deletedFeatures)

        return ICM, deletedFeatures, reconcile_mapper

    return ICM, deletedFeatures
    def compute_similarity(self, start_col=None, end_col=None, block_size = 100):
        """
        Compute the similarity for the given dataset
        :param self:
        :param start_col: column to begin with
        :param end_col: column to stop before, end_col is excluded
        :return:
        """

        values = []
        rows = []
        cols = []

        start_time = time.time()
        start_time_print_batch = start_time
        processedItems = 0


        if self.adjusted_cosine:
            self.applyAdjustedCosine()

        elif self.pearson_correlation:
            self.applyPearsonCorrelation()

        elif self.tanimoto_coefficient or self.dice_coefficient or self.tversky_coefficient:
            self.useOnlyBooleanInteractions()


        # We explore the matrix column-wise
        self.dataMatrix = check_matrix(self.dataMatrix, 'csc')


        # Compute sum of squared values to be used in normalization
        sumOfSquared = np.array(self.dataMatrix.power(2).sum(axis=0)).ravel()

        # Tanimoto does not require the square root to be applied
        if not (self.tanimoto_coefficient or self.dice_coefficient or self.tversky_coefficient):
            sumOfSquared = np.sqrt(sumOfSquared)

        if self.asymmetric_cosine:
            sumOfSquared_to_1_minus_alpha = np.power(sumOfSquared, 2 * (1 - self.asymmetric_alpha))
            sumOfSquared_to_alpha = np.power(sumOfSquared, 2 * self.asymmetric_alpha)


        self.dataMatrix = check_matrix(self.dataMatrix, 'csc')

        start_col_local = 0
        end_col_local = self.n_columns

        if start_col is not None and start_col>0 and start_col<self.n_columns:
            start_col_local = start_col

        if end_col is not None and end_col>start_col_local and end_col<self.n_columns:
            end_col_local = end_col




        start_col_block = start_col_local

        this_block_size = 0

        # Compute all similarities for each item using vectorization
        while start_col_block < end_col_local:


            end_col_block = min(start_col_block + block_size, end_col_local)
            this_block_size = end_col_block-start_col_block



            # All data points for a given item
            item_data = self.dataMatrix[:, start_col_block:end_col_block]
            item_data = item_data.toarray().squeeze()

            # If only 1 feature avoid last dimension to disappear
            if item_data.ndim == 1:
                item_data = np.atleast_2d(item_data)

            if self.use_row_weights:
                this_block_weights = self.dataMatrix_weighted.T.dot(item_data)

            else:
                # Compute item similarities
                this_block_weights = self.dataMatrix.T.dot(item_data)



            for col_index_in_block in range(this_block_size):

                if this_block_size == 1:
                    this_column_weights = this_block_weights
                else:
                    this_column_weights = this_block_weights[:,col_index_in_block]


                columnIndex = col_index_in_block + start_col_block
                this_column_weights[columnIndex] = 0.0

                # Apply normalization and shrinkage, ensure denominator != 0
                if self.normalize:

                    if self.asymmetric_cosine:
                        denominator = sumOfSquared_to_alpha[columnIndex] * sumOfSquared_to_1_minus_alpha + self.shrink + 1e-6
                    else:
                        denominator = sumOfSquared[columnIndex] * sumOfSquared + self.shrink + 1e-6

                    this_column_weights = np.multiply(this_column_weights, 1 / denominator)


                # Apply the specific denominator for Tanimoto
                elif self.tanimoto_coefficient:
                    denominator = sumOfSquared[columnIndex] + sumOfSquared - this_column_weights + self.shrink + 1e-6
                    this_column_weights = np.multiply(this_column_weights, 1 / denominator)

                elif self.dice_coefficient:
                    denominator = sumOfSquared[columnIndex] + sumOfSquared + self.shrink + 1e-6
                    this_column_weights = np.multiply(this_column_weights, 1 / denominator)

                elif self.tversky_coefficient:
                    denominator = this_column_weights + \
                                  (sumOfSquared[columnIndex] - this_column_weights)*self.tversky_alpha + \
                                  (sumOfSquared - this_column_weights)*self.tversky_beta + self.shrink + 1e-6
                    this_column_weights = np.multiply(this_column_weights, 1 / denominator)

                # If no normalization or tanimoto is selected, apply only shrink
                elif self.shrink != 0:
                    this_column_weights = this_column_weights/self.shrink


                #this_column_weights = this_column_weights.toarray().ravel()

                # Sort indices and select TopK
                # Sorting is done in three steps. Faster then plain np.argsort for higher number of items
                # - Partition the data to extract the set of relevant items
                # - Sort only the relevant items
                # - Get the original item index
                relevant_items_partition = (-this_column_weights).argpartition(self.TopK-1)[0:self.TopK]
                relevant_items_partition_sorting = np.argsort(-this_column_weights[relevant_items_partition])
                top_k_idx = relevant_items_partition[relevant_items_partition_sorting]

                # Incrementally build sparse matrix, do not add zeros
                notZerosMask = this_column_weights[top_k_idx] != 0.0
                numNotZeros = np.sum(notZerosMask)

                values.extend(this_column_weights[top_k_idx][notZerosMask])
                rows.extend(top_k_idx[notZerosMask])
                cols.extend(np.ones(numNotZeros) * columnIndex)


            # Add previous block size
            processedItems += this_block_size


            if time.time() - start_time_print_batch >= 30 or end_col_block==end_col_local:
                columnPerSec = processedItems / (time.time() - start_time + 1e-9)

                #print("Similarity column {} ( {:2.0f} % ), {:.2f} column/sec, elapsed time {:.2f} min".format(
                    #processedItems, processedItems / (end_col_local - start_col_local) * 100, columnPerSec, (time.time() - start_time)/ 60))

                sys.stdout.flush()
                sys.stderr.flush()

                start_time_print_batch = time.time()


            start_col_block += block_size

        # End while on columns

        W_sparse = sps.csr_matrix((values, (rows, cols)),
                                  shape=(self.n_columns, self.n_columns),
                                  dtype=np.float32)


        return W_sparse