def fit(self, lambda_user=10, lambda_item=25): self.lambda_user = lambda_user self.lambda_item = lambda_item self.n_items = self.URM_train.shape[1] # convert to csc matrix for faster column-wise sum self.URM_train = check_matrix(self.URM_train, 'csc', dtype=np.float32) # 1) global average self.mu = self.URM_train.data.sum( dtype=np.float32) / self.URM_train.data.shape[0] # 2) item average bias # compute the number of non-zero elements for each column col_nnz = np.diff(self.URM_train.indptr) # it is equivalent to: # col_nnz = X.indptr[1:] - X.indptr[:-1] # and it is **much faster** than # col_nnz = (X != 0).sum(axis=0) URM_train_unbiased = self.URM_train.copy() URM_train_unbiased.data -= self.mu self.item_bias = URM_train_unbiased.sum(axis=0) / (col_nnz + self.lambda_item) self.item_bias = np.asarray(self.item_bias).ravel( ) # converts 2-d matrix to 1-d array without anycopy # 3) user average bias # NOTE: the user bias is *useless* for the sake of ranking items. We just show it here for educational purposes. # first subtract the item biases from each column # then repeat each element of the item bias vector a number of times equal to col_nnz # and subtract it from the data vector URM_train_unbiased.data -= np.repeat(self.item_bias, col_nnz) # now convert the csc matrix to csr for efficient row-wise computation URM_train_unbiased_csr = URM_train_unbiased.tocsr() row_nnz = np.diff(URM_train_unbiased_csr.indptr) # finally, let's compute the bias self.user_bias = URM_train_unbiased_csr.sum( axis=1).ravel() / (row_nnz + self.lambda_user) # 4) precompute the item ranking by using the item bias only # the global average and user bias won't change the ranking, so there is no need to use them #self.item_ranking = np.argsort(self.bi)[::-1] self.URM_train = check_matrix(self.URM_train, 'csr', dtype=np.float32)
def applyPearsonCorrelation(self): """ Remove from every data point the average for the corresponding column :return: """ self.dataMatrix = check_matrix(self.dataMatrix, 'csc') interactionsPerCol = np.diff(self.dataMatrix.indptr) nonzeroCols = interactionsPerCol > 0 sumPerCol = np.asarray(self.dataMatrix.sum(axis=0)).ravel() colAverage = np.zeros_like(sumPerCol) colAverage[nonzeroCols] = sumPerCol[nonzeroCols] / interactionsPerCol[nonzeroCols] # Split in blocks to avoid duplicating the whole data structure start_col = 0 end_col= 0 blockSize = 1000 while end_col < self.n_columns: end_col = min(self.n_columns, end_col + blockSize) self.dataMatrix.data[self.dataMatrix.indptr[start_col]:self.dataMatrix.indptr[end_col]] -= \ np.repeat(colAverage[start_col:end_col], interactionsPerCol[start_col:end_col]) start_col += blockSize
def applyAdjustedCosine(self): """ Remove from every data point the average for the corresponding row :return: """ self.dataMatrix = check_matrix(self.dataMatrix, 'csr') interactionsPerRow = np.diff(self.dataMatrix.indptr) nonzeroRows = interactionsPerRow > 0 sumPerRow = np.asarray(self.dataMatrix.sum(axis=1)).ravel() rowAverage = np.zeros_like(sumPerRow) rowAverage[nonzeroRows] = sumPerRow[nonzeroRows] / interactionsPerRow[nonzeroRows] # Split in blocks to avoid duplicating the whole data structure start_row = 0 end_row= 0 blockSize = 1000 while end_row < self.n_rows: end_row = min(self.n_rows, end_row + blockSize) self.dataMatrix.data[self.dataMatrix.indptr[start_row]:self.dataMatrix.indptr[end_row]] -= \ np.repeat(rowAverage[start_row:end_row], interactionsPerRow[start_row:end_row]) start_row += blockSize
def remove_empty_rows_and_cols(URM, ICM=None): URM = check_matrix(URM, "csr") rows = URM.indptr numRatings = np.ediff1d(rows) user_mask = numRatings >= 1 URM = URM[user_mask, :] cols = URM.tocsc().indptr numRatings = np.ediff1d(cols) item_mask = numRatings >= 1 URM = URM[:, item_mask] removedUsers = np.arange(0, len(user_mask))[np.logical_not(user_mask)] removedItems = np.arange(0, len(item_mask))[np.logical_not(item_mask)] if ICM is not None: ICM = ICM[item_mask, :] return URM.tocsr(), ICM.tocsr(), removedUsers, removedItems return URM.tocsr(), removedUsers, removedItems
def __init__(self, URM_train, verbose=True): super(BaseRecommender, self).__init__() self.URM_train = check_matrix(URM_train.copy(), 'csr', dtype=np.float32) self.URM_train.eliminate_zeros() self.n_users, self.n_items = self.URM_train.shape self.verbose = verbose self.filterTopPop = False self.filterTopPop_ItemsID = np.array([], dtype=np.int) self.items_to_ignore_flag = False self.items_to_ignore_ID = np.array([], dtype=np.int) self._cold_user_mask = np.ediff1d(self.URM_train.indptr) == 0 if self._cold_user_mask.any(): self._print("URM Detected {} ({:.2f} %) cold users.".format( self._cold_user_mask.sum(), self._cold_user_mask.sum() / self.n_users * 100)) self._cold_item_mask = np.ediff1d(self.URM_train.tocsc().indptr) == 0 if self._cold_item_mask.any(): self._print("URM Detected {} ({:.2f} %) cold items.".format( self._cold_item_mask.sum(), self._cold_item_mask.sum() / self.n_items * 100))
def __init__(self, URM_recommendations_items): super(PredefinedListRecommender, self).__init__() # convert to csc matrix for faster column-wise sum self.URM_recommendations = check_matrix(URM_recommendations_items, 'csr', dtype=np.int) self.URM_train = sps.csr_matrix((self.URM_recommendations.shape))
def remove_features(ICM, min_occurrence=5, max_percentage_occurrence=0.30, reconcile_mapper=None): """ The function eliminates the values associated to feature occurring in less than the minimal percentage of items or more then the max. Shape of ICM is reduced deleting features. :param ICM: :param minPercOccurrence: :param max_percentage_occurrence: :param reconcile_mapper: DICT mapper [token] -> index :return: ICM :return: deletedFeatures :return: DICT mapper [token] -> index """ ICM = check_matrix(ICM, 'csc') n_items = ICM.shape[0] cols = ICM.indptr numOccurrences = np.ediff1d(cols) feature_mask = np.logical_and( numOccurrences >= min_occurrence, numOccurrences <= n_items * max_percentage_occurrence) ICM = ICM[:, feature_mask] deletedFeatures = np.arange( 0, len(feature_mask))[np.logical_not(feature_mask)] print( "RemoveFeatures: removed {} features with less then {} occurrences, removed {} features with more than {} occurrencies" .format(sum(numOccurrences < min_occurrence), min_occurrence, sum(numOccurrences > n_items * max_percentage_occurrence), int(n_items * max_percentage_occurrence))) if reconcile_mapper is not None: reconcile_mapper = reconcile_mapper_with_removed_tokens( reconcile_mapper, deletedFeatures) return ICM, deletedFeatures, reconcile_mapper return ICM, deletedFeatures
def compute_similarity(self, start_col=None, end_col=None, block_size = 100): """ Compute the similarity for the given dataset :param self: :param start_col: column to begin with :param end_col: column to stop before, end_col is excluded :return: """ values = [] rows = [] cols = [] start_time = time.time() start_time_print_batch = start_time processedItems = 0 if self.adjusted_cosine: self.applyAdjustedCosine() elif self.pearson_correlation: self.applyPearsonCorrelation() elif self.tanimoto_coefficient or self.dice_coefficient or self.tversky_coefficient: self.useOnlyBooleanInteractions() # We explore the matrix column-wise self.dataMatrix = check_matrix(self.dataMatrix, 'csc') # Compute sum of squared values to be used in normalization sumOfSquared = np.array(self.dataMatrix.power(2).sum(axis=0)).ravel() # Tanimoto does not require the square root to be applied if not (self.tanimoto_coefficient or self.dice_coefficient or self.tversky_coefficient): sumOfSquared = np.sqrt(sumOfSquared) if self.asymmetric_cosine: sumOfSquared_to_1_minus_alpha = np.power(sumOfSquared, 2 * (1 - self.asymmetric_alpha)) sumOfSquared_to_alpha = np.power(sumOfSquared, 2 * self.asymmetric_alpha) self.dataMatrix = check_matrix(self.dataMatrix, 'csc') start_col_local = 0 end_col_local = self.n_columns if start_col is not None and start_col>0 and start_col<self.n_columns: start_col_local = start_col if end_col is not None and end_col>start_col_local and end_col<self.n_columns: end_col_local = end_col start_col_block = start_col_local this_block_size = 0 # Compute all similarities for each item using vectorization while start_col_block < end_col_local: end_col_block = min(start_col_block + block_size, end_col_local) this_block_size = end_col_block-start_col_block # All data points for a given item item_data = self.dataMatrix[:, start_col_block:end_col_block] item_data = item_data.toarray().squeeze() # If only 1 feature avoid last dimension to disappear if item_data.ndim == 1: item_data = np.atleast_2d(item_data) if self.use_row_weights: this_block_weights = self.dataMatrix_weighted.T.dot(item_data) else: # Compute item similarities this_block_weights = self.dataMatrix.T.dot(item_data) for col_index_in_block in range(this_block_size): if this_block_size == 1: this_column_weights = this_block_weights else: this_column_weights = this_block_weights[:,col_index_in_block] columnIndex = col_index_in_block + start_col_block this_column_weights[columnIndex] = 0.0 # Apply normalization and shrinkage, ensure denominator != 0 if self.normalize: if self.asymmetric_cosine: denominator = sumOfSquared_to_alpha[columnIndex] * sumOfSquared_to_1_minus_alpha + self.shrink + 1e-6 else: denominator = sumOfSquared[columnIndex] * sumOfSquared + self.shrink + 1e-6 this_column_weights = np.multiply(this_column_weights, 1 / denominator) # Apply the specific denominator for Tanimoto elif self.tanimoto_coefficient: denominator = sumOfSquared[columnIndex] + sumOfSquared - this_column_weights + self.shrink + 1e-6 this_column_weights = np.multiply(this_column_weights, 1 / denominator) elif self.dice_coefficient: denominator = sumOfSquared[columnIndex] + sumOfSquared + self.shrink + 1e-6 this_column_weights = np.multiply(this_column_weights, 1 / denominator) elif self.tversky_coefficient: denominator = this_column_weights + \ (sumOfSquared[columnIndex] - this_column_weights)*self.tversky_alpha + \ (sumOfSquared - this_column_weights)*self.tversky_beta + self.shrink + 1e-6 this_column_weights = np.multiply(this_column_weights, 1 / denominator) # If no normalization or tanimoto is selected, apply only shrink elif self.shrink != 0: this_column_weights = this_column_weights/self.shrink #this_column_weights = this_column_weights.toarray().ravel() # Sort indices and select TopK # Sorting is done in three steps. Faster then plain np.argsort for higher number of items # - Partition the data to extract the set of relevant items # - Sort only the relevant items # - Get the original item index relevant_items_partition = (-this_column_weights).argpartition(self.TopK-1)[0:self.TopK] relevant_items_partition_sorting = np.argsort(-this_column_weights[relevant_items_partition]) top_k_idx = relevant_items_partition[relevant_items_partition_sorting] # Incrementally build sparse matrix, do not add zeros notZerosMask = this_column_weights[top_k_idx] != 0.0 numNotZeros = np.sum(notZerosMask) values.extend(this_column_weights[top_k_idx][notZerosMask]) rows.extend(top_k_idx[notZerosMask]) cols.extend(np.ones(numNotZeros) * columnIndex) # Add previous block size processedItems += this_block_size if time.time() - start_time_print_batch >= 30 or end_col_block==end_col_local: columnPerSec = processedItems / (time.time() - start_time + 1e-9) #print("Similarity column {} ( {:2.0f} % ), {:.2f} column/sec, elapsed time {:.2f} min".format( #processedItems, processedItems / (end_col_local - start_col_local) * 100, columnPerSec, (time.time() - start_time)/ 60)) sys.stdout.flush() sys.stderr.flush() start_time_print_batch = time.time() start_col_block += block_size # End while on columns W_sparse = sps.csr_matrix((values, (rows, cols)), shape=(self.n_columns, self.n_columns), dtype=np.float32) return W_sparse