def process(self, paths: Union[str, Dict[str, str]], src_vocab_opt: VocabularyOption = None, tgt_vocab_opt: VocabularyOption = None, src_embed_opt: EmbeddingOption = None, char_level_op=False): paths = check_dataloader_paths(paths) datasets = {} info = DataBundle() for name, path in paths.items(): dataset = self.load(path) datasets[name] = dataset def wordtochar(words): chars = [] for word in words: word = word.lower() for char in word: chars.append(char) chars.append('') chars.pop() return chars input_name, target_name = 'words', 'target' info.vocabs={} # 就分隔为char形式 if char_level_op: for dataset in datasets.values(): dataset.apply_field(wordtochar, field_name="words", new_field_name='chars') src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(**src_vocab_opt) src_vocab.from_dataset(datasets['train'], field_name='words') src_vocab.index_dataset(*datasets.values(), field_name='words') tgt_vocab = Vocabulary(unknown=None, padding=None) \ if tgt_vocab_opt is None else Vocabulary(**tgt_vocab_opt) tgt_vocab.from_dataset(datasets['train'], field_name='target') tgt_vocab.index_dataset(*datasets.values(), field_name='target') info.vocabs = { "words": src_vocab, "target": tgt_vocab } info.datasets = datasets if src_embed_opt is not None: embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab) info.embeddings['words'] = embed for name, dataset in info.datasets.items(): dataset.set_input("words") dataset.set_target("target") return info
def process(self, paths, **kwargs): data_info = DataBundle() for name in ['train', 'test', 'dev']: data_info.datasets[name] = self.load(paths[name]) config = Config() vocab = Vocabulary().from_dataset(*data_info.datasets.values(), field_name='sentences') vocab.build_vocab() word2id = vocab.word2idx char_dict = preprocess.get_char_dict(config.char_path) data_info.vocabs = vocab genres = { g: i for i, g in enumerate(["bc", "bn", "mz", "nw", "pt", "tc", "wb"]) } for name, ds in data_info.datasets.items(): ds.apply( lambda x: preprocess.doc2numpy(x['sentences'], word2id, char_dict, max(config.filter), config.max_sentences, is_train=name == 'train')[0], new_field_name='doc_np') ds.apply( lambda x: preprocess.doc2numpy(x['sentences'], word2id, char_dict, max(config.filter), config.max_sentences, is_train=name == 'train')[1], new_field_name='char_index') ds.apply( lambda x: preprocess.doc2numpy(x['sentences'], word2id, char_dict, max(config.filter), config.max_sentences, is_train=name == 'train')[2], new_field_name='seq_len') ds.apply(lambda x: preprocess.speaker2numpy( x["speakers"], config.max_sentences, is_train=name == 'train'), new_field_name='speaker_ids_np') ds.apply(lambda x: genres[x["doc_key"][:2]], new_field_name='genre') ds.set_ignore_type('clusters') ds.set_padder('clusters', None) ds.set_input("sentences", "doc_np", "speaker_ids_np", "genre", "char_index", "seq_len") ds.set_target("clusters") # train_dev, test = self.ds.split(348 / (2802 + 343 + 348), shuffle=False) # train, dev = train_dev.split(343 / (2802 + 343), shuffle=False) return data_info
def process(self, paths: Union[str, Dict[str, str]], train_ds: Iterable[str] = None, src_vocab_op: VocabularyOption = None, tgt_vocab_op: VocabularyOption = None, embed_opt: EmbeddingOption = None, char_level_op=False, split_dev_op=True ): paths = check_dataloader_paths(paths) datasets = {} info = DataBundle(datasets=self.load(paths)) src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(**src_vocab_op) tgt_vocab = Vocabulary(unknown=None, padding=None) \ if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op) _train_ds = [info.datasets[name] for name in train_ds] if train_ds else info.datasets.values() def wordtochar(words): chars = [] for word in words: word = word.lower() for char in word: chars.append(char) chars.append('') chars.pop() return chars input_name, target_name = 'words', 'target' info.vocabs={} #就分隔为char形式 if char_level_op: for dataset in info.datasets.values(): dataset.apply_field(wordtochar, field_name="words",new_field_name='chars') # if embed_opt is not None: # embed = EmbedLoader.load_with_vocab(**embed_opt, vocab=vocab) # info.embeddings['words'] = embed else: src_vocab.from_dataset(*_train_ds, field_name=input_name) src_vocab.index_dataset(*info.datasets.values(),field_name=input_name, new_field_name=input_name) info.vocabs[input_name]=src_vocab tgt_vocab.from_dataset(*_train_ds, field_name=target_name) tgt_vocab.index_dataset( *info.datasets.values(), field_name=target_name, new_field_name=target_name) info.vocabs[target_name]=tgt_vocab if split_dev_op: info.datasets['train'], info.datasets['dev'] = info.datasets['train'].split(0.1, shuffle=False) for name, dataset in info.datasets.items(): dataset.set_input("words") dataset.set_target("target") return info
def process(self, paths: Union[str, Dict[str, str]], src_vocab_opt: VocabularyOption = None, tgt_vocab_opt: VocabularyOption = None, src_embed_opt: EmbeddingOption = None): paths = check_dataloader_paths(paths) datasets = {} info = DataBundle() for name, path in paths.items(): dataset = self.load(path) datasets[name] = dataset src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(**src_vocab_opt) src_vocab.from_dataset(datasets['train'], field_name='words') src_vocab.index_dataset(*datasets.values(), field_name='words') tgt_vocab = Vocabulary(unknown=None, padding=None) \ if tgt_vocab_opt is None else Vocabulary(**tgt_vocab_opt) tgt_vocab.from_dataset(datasets['train'], field_name='target') tgt_vocab.index_dataset(*datasets.values(), field_name='target') info.vocabs = { "words": src_vocab, "target": tgt_vocab } info.datasets = datasets if src_embed_opt is not None: embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab) info.embeddings['words'] = embed for name, dataset in info.datasets.items(): dataset.set_input("words") dataset.set_target("target") return info
def process(self, paths, train_ds: Iterable[str] = None, src_vocab_op: VocabularyOption = None, tgt_vocab_op: VocabularyOption = None, src_embed_op: EmbeddingOption = None): input_name, target_name = 'words', 'target' src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(**src_vocab_op) tgt_vocab = Vocabulary(unknown=None, padding=None) \ if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op) info = DataBundle(datasets=self.load(paths)) _train_ds = [info.datasets[name] for name in train_ds] if train_ds else info.datasets.values() src_vocab.from_dataset(*_train_ds, field_name=input_name) tgt_vocab.from_dataset(*_train_ds, field_name=target_name) src_vocab.index_dataset( *info.datasets.values(), field_name=input_name, new_field_name=input_name) tgt_vocab.index_dataset( *info.datasets.values(), field_name=target_name, new_field_name=target_name) info.vocabs = { input_name: src_vocab, target_name: tgt_vocab } if src_embed_op is not None: src_embed_op.vocab = src_vocab init_emb = EmbedLoader.load_with_vocab(**src_embed_op) info.embeddings[input_name] = init_emb for name, dataset in info.datasets.items(): dataset.set_input(input_name) dataset.set_target(target_name) return info
def process( self, paths: Union[str, Dict[str, str]], dataset_name: str = None, to_lower=False, seq_len_type: str = None, bert_tokenizer: str = None, cut_text: int = None, get_index=True, auto_pad_length: int = None, auto_pad_token: str = '<pad>', set_input: Union[list, str, bool] = True, set_target: Union[list, str, bool] = True, concat: Union[str, list, bool] = None, ) -> DataBundle: """ :param paths: str或者Dict[str, str]。如果是str,则为数据集所在的文件夹或者是全路径文件名:如果是文件夹, 则会从self.paths里面找对应的数据集名称与文件名。如果是Dict,则为数据集名称(如train、dev、test)和 对应的全路径文件名。 :param str dataset_name: 如果在paths里传入的是一个数据集的全路径文件名,那么可以用dataset_name来定义 这个数据集的名字,如果不定义则默认为train。 :param bool to_lower: 是否将文本自动转为小写。默认值为False。 :param str seq_len_type: 提供的seq_len类型,支持 ``seq_len`` :提供一个数字作为句子长度; ``mask`` : 提供一个0/1的mask矩阵作为句子长度; ``bert`` :提供segment_type_id(第一个句子为0,第二个句子为1)和 attention mask矩阵(0/1的mask矩阵)。默认值为None,即不提供seq_len :param str bert_tokenizer: bert tokenizer所使用的词表所在的文件夹路径 :param int cut_text: 将长于cut_text的内容截掉。默认为None,即不截。 :param bool get_index: 是否需要根据词表将文本转为index :param int auto_pad_length: 是否需要将文本自动pad到一定长度(超过这个长度的文本将会被截掉),默认为不会自动pad :param str auto_pad_token: 自动pad的内容 :param set_input: 如果为True,则会自动将相关的field(名字里含有Const.INPUT的)设置为input,如果为False 则不会将任何field设置为input。如果传入str或者List[str],则会根据传入的内容将相对应的field设置为input, 于此同时其他field不会被设置为input。默认值为True。 :param set_target: set_target将控制哪些field可以被设置为target,用法与set_input一致。默认值为True。 :param concat: 是否需要将两个句子拼接起来。如果为False则不会拼接。如果为True则会在两个句子之间插入一个<sep>。 如果传入一个长度为4的list,则分别表示插在第一句开始前、第一句结束后、第二句开始前、第二句结束后的标识符。如果 传入字符串 ``bert`` ,则会采用bert的拼接方式,等价于['[CLS]', '[SEP]', '', '[SEP]']. :return: """ if isinstance(set_input, str): set_input = [set_input] if isinstance(set_target, str): set_target = [set_target] if isinstance(set_input, bool): auto_set_input = set_input else: auto_set_input = False if isinstance(set_target, bool): auto_set_target = set_target else: auto_set_target = False if isinstance(paths, str): if os.path.isdir(paths): path = { n: os.path.join(paths, self.paths[n]) for n in self.paths.keys() } else: path = { dataset_name if dataset_name is not None else 'train': paths } else: path = paths data_info = DataBundle() for data_name in path.keys(): data_info.datasets[data_name] = self._load(path[data_name]) for data_name, data_set in data_info.datasets.items(): if auto_set_input: data_set.set_input(Const.INPUTS(0), Const.INPUTS(1)) if auto_set_target: if Const.TARGET in data_set.get_field_names(): data_set.set_target(Const.TARGET) if to_lower: for data_name, data_set in data_info.datasets.items(): data_set.apply( lambda x: [w.lower() for w in x[Const.INPUTS(0)]], new_field_name=Const.INPUTS(0), is_input=auto_set_input) data_set.apply( lambda x: [w.lower() for w in x[Const.INPUTS(1)]], new_field_name=Const.INPUTS(1), is_input=auto_set_input) if bert_tokenizer is not None: if bert_tokenizer.lower() in PRETRAINED_BERT_MODEL_DIR: PRETRAIN_URL = _get_base_url('bert') model_name = PRETRAINED_BERT_MODEL_DIR[bert_tokenizer] model_url = PRETRAIN_URL + model_name model_dir = cached_path(model_url) # 检查是否存在 elif os.path.isdir(bert_tokenizer): model_dir = bert_tokenizer else: raise ValueError( f"Cannot recognize BERT tokenizer from {bert_tokenizer}.") words_vocab = Vocabulary(padding='[PAD]', unknown='[UNK]') with open(os.path.join(model_dir, 'vocab.txt'), 'r') as f: lines = f.readlines() lines = [line.strip() for line in lines] words_vocab.add_word_lst(lines) words_vocab.build_vocab() tokenizer = BertTokenizer.from_pretrained(model_dir) for data_name, data_set in data_info.datasets.items(): for fields in data_set.get_field_names(): if Const.INPUT in fields: data_set.apply( lambda x: tokenizer.tokenize(' '.join(x[fields])), new_field_name=fields, is_input=auto_set_input) if isinstance(concat, bool): concat = 'default' if concat else None if concat is not None: if isinstance(concat, str): CONCAT_MAP = { 'bert': ['[CLS]', '[SEP]', '', '[SEP]'], 'default': ['', '<sep>', '', ''] } if concat.lower() in CONCAT_MAP: concat = CONCAT_MAP[concat] else: concat = 4 * [concat] assert len(concat) == 4, \ f'Please choose a list with 4 symbols which at the beginning of first sentence ' \ f'the end of first sentence, the begin of second sentence, and the end of second' \ f'sentence. Your input is {concat}' for data_name, data_set in data_info.datasets.items(): data_set.apply( lambda x: [concat[0]] + x[Const.INPUTS(0)] + [concat[ 1]] + [concat[2]] + x[Const.INPUTS(1)] + [concat[3]], new_field_name=Const.INPUT) data_set.apply( lambda x: [w for w in x[Const.INPUT] if len(w) > 0], new_field_name=Const.INPUT, is_input=auto_set_input) if seq_len_type is not None: if seq_len_type == 'seq_len': # for data_name, data_set in data_info.datasets.items(): for fields in data_set.get_field_names(): if Const.INPUT in fields: data_set.apply(lambda x: len(x[fields]), new_field_name=fields.replace( Const.INPUT, Const.INPUT_LEN), is_input=auto_set_input) elif seq_len_type == 'mask': for data_name, data_set in data_info.datasets.items(): for fields in data_set.get_field_names(): if Const.INPUT in fields: data_set.apply(lambda x: [1] * len(x[fields]), new_field_name=fields.replace( Const.INPUT, Const.INPUT_LEN), is_input=auto_set_input) elif seq_len_type == 'bert': for data_name, data_set in data_info.datasets.items(): if Const.INPUT not in data_set.get_field_names(): raise KeyError( f'Field ``{Const.INPUT}`` not in {data_name} data set: ' f'got {data_set.get_field_names()}') data_set.apply(lambda x: [0] * (len(x[Const.INPUTS(0)]) + 2) + [1] * (len(x[Const.INPUTS(1)]) + 1), new_field_name=Const.INPUT_LENS(0), is_input=auto_set_input) data_set.apply(lambda x: [1] * len(x[Const.INPUT_LENS(0)]), new_field_name=Const.INPUT_LENS(1), is_input=auto_set_input) if auto_pad_length is not None: cut_text = min( auto_pad_length, cut_text if cut_text is not None else auto_pad_length) if cut_text is not None: for data_name, data_set in data_info.datasets.items(): for fields in data_set.get_field_names(): if (Const.INPUT in fields) or ((Const.INPUT_LEN in fields) and (seq_len_type != 'seq_len')): data_set.apply(lambda x: x[fields][:cut_text], new_field_name=fields, is_input=auto_set_input) data_set_list = [d for n, d in data_info.datasets.items()] assert len(data_set_list) > 0, f'There are NO data sets in data info!' if bert_tokenizer is None: words_vocab = Vocabulary(padding=auto_pad_token) words_vocab = words_vocab.from_dataset( *[d for n, d in data_info.datasets.items() if 'train' in n], field_name=[ n for n in data_set_list[0].get_field_names() if (Const.INPUT in n) ], no_create_entry_dataset=[ d for n, d in data_info.datasets.items() if 'train' not in n ]) target_vocab = Vocabulary(padding=None, unknown=None) target_vocab = target_vocab.from_dataset( *[d for n, d in data_info.datasets.items() if 'train' in n], field_name=Const.TARGET) data_info.vocabs = { Const.INPUT: words_vocab, Const.TARGET: target_vocab } if get_index: for data_name, data_set in data_info.datasets.items(): for fields in data_set.get_field_names(): if Const.INPUT in fields: data_set.apply( lambda x: [words_vocab.to_index(w) for w in x[fields]], new_field_name=fields, is_input=auto_set_input) if Const.TARGET in data_set.get_field_names(): data_set.apply( lambda x: target_vocab.to_index(x[Const.TARGET]), new_field_name=Const.TARGET, is_input=auto_set_input, is_target=auto_set_target) if auto_pad_length is not None: if seq_len_type == 'seq_len': raise RuntimeError( f'the sequence will be padded with the length {auto_pad_length}, ' f'so the seq_len_type cannot be `{seq_len_type}`!') for data_name, data_set in data_info.datasets.items(): for fields in data_set.get_field_names(): if Const.INPUT in fields: data_set.apply( lambda x: x[fields] + [words_vocab.to_index(words_vocab.padding)] * (auto_pad_length - len(x[fields])), new_field_name=fields, is_input=auto_set_input) elif (Const.INPUT_LEN in fields) and (seq_len_type != 'seq_len'): data_set.apply(lambda x: x[fields] + [0] * (auto_pad_length - len(x[fields])), new_field_name=fields, is_input=auto_set_input) for data_name, data_set in data_info.datasets.items(): if isinstance(set_input, list): data_set.set_input(*[ inputs for inputs in set_input if inputs in data_set.get_field_names() ]) if isinstance(set_target, list): data_set.set_target(*[ target for target in set_target if target in data_set.get_field_names() ]) return data_info