示例#1
0
    def process(self,
                paths: Union[str, Dict[str, str]],
                src_vocab_opt: VocabularyOption = None,
                tgt_vocab_opt: VocabularyOption = None,
                src_embed_opt: EmbeddingOption = None,
                char_level_op=False):

        paths = check_dataloader_paths(paths)
        datasets = {}
        info = DataBundle()
        for name, path in paths.items():
            dataset = self.load(path)
            datasets[name] = dataset

        def wordtochar(words):
            chars = []
            for word in words:
                word = word.lower()
                for char in word:
                    chars.append(char)
                chars.append('')
            chars.pop()
            return chars

        input_name, target_name = 'words', 'target'
        info.vocabs={}

        # 就分隔为char形式
        if char_level_op:
            for dataset in datasets.values():
                dataset.apply_field(wordtochar, field_name="words", new_field_name='chars')
        src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(**src_vocab_opt)
        src_vocab.from_dataset(datasets['train'], field_name='words')
        src_vocab.index_dataset(*datasets.values(), field_name='words')

        tgt_vocab = Vocabulary(unknown=None, padding=None) \
            if tgt_vocab_opt is None else Vocabulary(**tgt_vocab_opt)
        tgt_vocab.from_dataset(datasets['train'], field_name='target')
        tgt_vocab.index_dataset(*datasets.values(), field_name='target')


        info.vocabs = {
            "words": src_vocab,
            "target": tgt_vocab
        }

        info.datasets = datasets

        if src_embed_opt is not None:
            embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab)
            info.embeddings['words'] = embed

        for name, dataset in info.datasets.items():
            dataset.set_input("words")
            dataset.set_target("target")

        return info
示例#2
0
    def process(self, paths, **kwargs):
        data_info = DataBundle()
        for name in ['train', 'test', 'dev']:
            data_info.datasets[name] = self.load(paths[name])

        config = Config()
        vocab = Vocabulary().from_dataset(*data_info.datasets.values(),
                                          field_name='sentences')
        vocab.build_vocab()
        word2id = vocab.word2idx

        char_dict = preprocess.get_char_dict(config.char_path)
        data_info.vocabs = vocab

        genres = {
            g: i
            for i, g in enumerate(["bc", "bn", "mz", "nw", "pt", "tc", "wb"])
        }

        for name, ds in data_info.datasets.items():
            ds.apply(
                lambda x: preprocess.doc2numpy(x['sentences'],
                                               word2id,
                                               char_dict,
                                               max(config.filter),
                                               config.max_sentences,
                                               is_train=name == 'train')[0],
                new_field_name='doc_np')
            ds.apply(
                lambda x: preprocess.doc2numpy(x['sentences'],
                                               word2id,
                                               char_dict,
                                               max(config.filter),
                                               config.max_sentences,
                                               is_train=name == 'train')[1],
                new_field_name='char_index')
            ds.apply(
                lambda x: preprocess.doc2numpy(x['sentences'],
                                               word2id,
                                               char_dict,
                                               max(config.filter),
                                               config.max_sentences,
                                               is_train=name == 'train')[2],
                new_field_name='seq_len')
            ds.apply(lambda x: preprocess.speaker2numpy(
                x["speakers"], config.max_sentences, is_train=name == 'train'),
                     new_field_name='speaker_ids_np')
            ds.apply(lambda x: genres[x["doc_key"][:2]],
                     new_field_name='genre')

            ds.set_ignore_type('clusters')
            ds.set_padder('clusters', None)
            ds.set_input("sentences", "doc_np", "speaker_ids_np", "genre",
                         "char_index", "seq_len")
            ds.set_target("clusters")

        # train_dev, test = self.ds.split(348 / (2802 + 343 + 348), shuffle=False)
        # train, dev = train_dev.split(343 / (2802 + 343), shuffle=False)

        return data_info
示例#3
0
    def process(self, paths: Union[str, Dict[str, str]],
                train_ds: Iterable[str] = None,
                src_vocab_op: VocabularyOption = None,
                tgt_vocab_op: VocabularyOption = None,
                embed_opt: EmbeddingOption = None,
                char_level_op=False,
                split_dev_op=True
                ):
        paths = check_dataloader_paths(paths)
        datasets = {}
        info = DataBundle(datasets=self.load(paths))
        src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(**src_vocab_op)
        tgt_vocab = Vocabulary(unknown=None, padding=None) \
            if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op)
        _train_ds = [info.datasets[name]
                     for name in train_ds] if train_ds else info.datasets.values()

        def wordtochar(words):
            chars = []
            for word in words:
                word = word.lower()
                for char in word:
                    chars.append(char)
                chars.append('')
            chars.pop()
            return chars

        input_name, target_name = 'words', 'target'
        info.vocabs={}
        #就分隔为char形式
        if char_level_op:
            for dataset in info.datasets.values():
                dataset.apply_field(wordtochar, field_name="words",new_field_name='chars')
        # if embed_opt is not None:
        #     embed = EmbedLoader.load_with_vocab(**embed_opt, vocab=vocab)
        #     info.embeddings['words'] = embed
        else:
            src_vocab.from_dataset(*_train_ds, field_name=input_name)
            src_vocab.index_dataset(*info.datasets.values(),field_name=input_name, new_field_name=input_name)
            info.vocabs[input_name]=src_vocab

        tgt_vocab.from_dataset(*_train_ds, field_name=target_name)
        tgt_vocab.index_dataset(
            *info.datasets.values(),
            field_name=target_name, new_field_name=target_name)

        info.vocabs[target_name]=tgt_vocab

        if split_dev_op:
            info.datasets['train'], info.datasets['dev'] = info.datasets['train'].split(0.1, shuffle=False)

        for name, dataset in info.datasets.items():
            dataset.set_input("words")
            dataset.set_target("target")

        return info
示例#4
0
    def process(self,
                paths: Union[str, Dict[str, str]],
                src_vocab_opt: VocabularyOption = None,
                tgt_vocab_opt: VocabularyOption = None,
                src_embed_opt: EmbeddingOption = None):
        
        paths = check_dataloader_paths(paths)
        datasets = {}
        info = DataBundle()
        for name, path in paths.items():
            dataset = self.load(path)
            datasets[name] = dataset

        src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(**src_vocab_opt)
        src_vocab.from_dataset(datasets['train'], field_name='words')
        src_vocab.index_dataset(*datasets.values(), field_name='words')

        tgt_vocab = Vocabulary(unknown=None, padding=None) \
            if tgt_vocab_opt is None else Vocabulary(**tgt_vocab_opt)
        tgt_vocab.from_dataset(datasets['train'], field_name='target')
        tgt_vocab.index_dataset(*datasets.values(), field_name='target')

        info.vocabs = {
            "words": src_vocab,
            "target": tgt_vocab
        }

        info.datasets = datasets

        if src_embed_opt is not None:
            embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab)
            info.embeddings['words'] = embed

        for name, dataset in info.datasets.items():
            dataset.set_input("words")
            dataset.set_target("target")

        return info
示例#5
0
    def process(self,
                paths,
                train_ds: Iterable[str] = None,
                src_vocab_op: VocabularyOption = None,
                tgt_vocab_op: VocabularyOption = None,
                src_embed_op: EmbeddingOption = None):
        input_name, target_name = 'words', 'target'
        src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(**src_vocab_op)
        tgt_vocab = Vocabulary(unknown=None, padding=None) \
            if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op)

        info = DataBundle(datasets=self.load(paths))
        _train_ds = [info.datasets[name]
                     for name in train_ds] if train_ds else info.datasets.values()
        src_vocab.from_dataset(*_train_ds, field_name=input_name)
        tgt_vocab.from_dataset(*_train_ds, field_name=target_name)
        src_vocab.index_dataset(
            *info.datasets.values(),
            field_name=input_name, new_field_name=input_name)
        tgt_vocab.index_dataset(
            *info.datasets.values(),
            field_name=target_name, new_field_name=target_name)
        info.vocabs = {
            input_name: src_vocab,
            target_name: tgt_vocab
        }


        if src_embed_op is not None:
            src_embed_op.vocab = src_vocab
            init_emb = EmbedLoader.load_with_vocab(**src_embed_op)
            info.embeddings[input_name] = init_emb


        for name, dataset in info.datasets.items():
            dataset.set_input(input_name)
            dataset.set_target(target_name)
        return info
示例#6
0
    def process(
        self,
        paths: Union[str, Dict[str, str]],
        dataset_name: str = None,
        to_lower=False,
        seq_len_type: str = None,
        bert_tokenizer: str = None,
        cut_text: int = None,
        get_index=True,
        auto_pad_length: int = None,
        auto_pad_token: str = '<pad>',
        set_input: Union[list, str, bool] = True,
        set_target: Union[list, str, bool] = True,
        concat: Union[str, list, bool] = None,
    ) -> DataBundle:
        """
        :param paths: str或者Dict[str, str]。如果是str,则为数据集所在的文件夹或者是全路径文件名:如果是文件夹,
            则会从self.paths里面找对应的数据集名称与文件名。如果是Dict,则为数据集名称(如train、dev、test)和
            对应的全路径文件名。
        :param str dataset_name: 如果在paths里传入的是一个数据集的全路径文件名,那么可以用dataset_name来定义
            这个数据集的名字,如果不定义则默认为train。
        :param bool to_lower: 是否将文本自动转为小写。默认值为False。
        :param str seq_len_type: 提供的seq_len类型,支持 ``seq_len`` :提供一个数字作为句子长度; ``mask`` :
            提供一个0/1的mask矩阵作为句子长度; ``bert`` :提供segment_type_id(第一个句子为0,第二个句子为1)和
            attention mask矩阵(0/1的mask矩阵)。默认值为None,即不提供seq_len
        :param str bert_tokenizer: bert tokenizer所使用的词表所在的文件夹路径
        :param int cut_text: 将长于cut_text的内容截掉。默认为None,即不截。
        :param bool get_index: 是否需要根据词表将文本转为index
        :param int auto_pad_length: 是否需要将文本自动pad到一定长度(超过这个长度的文本将会被截掉),默认为不会自动pad
        :param str auto_pad_token: 自动pad的内容
        :param set_input: 如果为True,则会自动将相关的field(名字里含有Const.INPUT的)设置为input,如果为False
            则不会将任何field设置为input。如果传入str或者List[str],则会根据传入的内容将相对应的field设置为input,
            于此同时其他field不会被设置为input。默认值为True。
        :param set_target: set_target将控制哪些field可以被设置为target,用法与set_input一致。默认值为True。
        :param concat: 是否需要将两个句子拼接起来。如果为False则不会拼接。如果为True则会在两个句子之间插入一个<sep>。
            如果传入一个长度为4的list,则分别表示插在第一句开始前、第一句结束后、第二句开始前、第二句结束后的标识符。如果
            传入字符串 ``bert`` ,则会采用bert的拼接方式,等价于['[CLS]', '[SEP]', '', '[SEP]'].
        :return:
        """
        if isinstance(set_input, str):
            set_input = [set_input]
        if isinstance(set_target, str):
            set_target = [set_target]
        if isinstance(set_input, bool):
            auto_set_input = set_input
        else:
            auto_set_input = False
        if isinstance(set_target, bool):
            auto_set_target = set_target
        else:
            auto_set_target = False
        if isinstance(paths, str):
            if os.path.isdir(paths):
                path = {
                    n: os.path.join(paths, self.paths[n])
                    for n in self.paths.keys()
                }
            else:
                path = {
                    dataset_name if dataset_name is not None else 'train':
                    paths
                }
        else:
            path = paths

        data_info = DataBundle()
        for data_name in path.keys():
            data_info.datasets[data_name] = self._load(path[data_name])

        for data_name, data_set in data_info.datasets.items():
            if auto_set_input:
                data_set.set_input(Const.INPUTS(0), Const.INPUTS(1))
            if auto_set_target:
                if Const.TARGET in data_set.get_field_names():
                    data_set.set_target(Const.TARGET)

        if to_lower:
            for data_name, data_set in data_info.datasets.items():
                data_set.apply(
                    lambda x: [w.lower() for w in x[Const.INPUTS(0)]],
                    new_field_name=Const.INPUTS(0),
                    is_input=auto_set_input)
                data_set.apply(
                    lambda x: [w.lower() for w in x[Const.INPUTS(1)]],
                    new_field_name=Const.INPUTS(1),
                    is_input=auto_set_input)

        if bert_tokenizer is not None:
            if bert_tokenizer.lower() in PRETRAINED_BERT_MODEL_DIR:
                PRETRAIN_URL = _get_base_url('bert')
                model_name = PRETRAINED_BERT_MODEL_DIR[bert_tokenizer]
                model_url = PRETRAIN_URL + model_name
                model_dir = cached_path(model_url)
                # 检查是否存在
            elif os.path.isdir(bert_tokenizer):
                model_dir = bert_tokenizer
            else:
                raise ValueError(
                    f"Cannot recognize BERT tokenizer from {bert_tokenizer}.")

            words_vocab = Vocabulary(padding='[PAD]', unknown='[UNK]')
            with open(os.path.join(model_dir, 'vocab.txt'), 'r') as f:
                lines = f.readlines()
            lines = [line.strip() for line in lines]
            words_vocab.add_word_lst(lines)
            words_vocab.build_vocab()

            tokenizer = BertTokenizer.from_pretrained(model_dir)

            for data_name, data_set in data_info.datasets.items():
                for fields in data_set.get_field_names():
                    if Const.INPUT in fields:
                        data_set.apply(
                            lambda x: tokenizer.tokenize(' '.join(x[fields])),
                            new_field_name=fields,
                            is_input=auto_set_input)

        if isinstance(concat, bool):
            concat = 'default' if concat else None
        if concat is not None:
            if isinstance(concat, str):
                CONCAT_MAP = {
                    'bert': ['[CLS]', '[SEP]', '', '[SEP]'],
                    'default': ['', '<sep>', '', '']
                }
                if concat.lower() in CONCAT_MAP:
                    concat = CONCAT_MAP[concat]
                else:
                    concat = 4 * [concat]
            assert len(concat) == 4, \
                f'Please choose a list with 4 symbols which at the beginning of first sentence ' \
                f'the end of first sentence, the begin of second sentence, and the end of second' \
                f'sentence. Your input is {concat}'

            for data_name, data_set in data_info.datasets.items():
                data_set.apply(
                    lambda x: [concat[0]] + x[Const.INPUTS(0)] + [concat[
                        1]] + [concat[2]] + x[Const.INPUTS(1)] + [concat[3]],
                    new_field_name=Const.INPUT)
                data_set.apply(
                    lambda x: [w for w in x[Const.INPUT] if len(w) > 0],
                    new_field_name=Const.INPUT,
                    is_input=auto_set_input)

        if seq_len_type is not None:
            if seq_len_type == 'seq_len':  #
                for data_name, data_set in data_info.datasets.items():
                    for fields in data_set.get_field_names():
                        if Const.INPUT in fields:
                            data_set.apply(lambda x: len(x[fields]),
                                           new_field_name=fields.replace(
                                               Const.INPUT, Const.INPUT_LEN),
                                           is_input=auto_set_input)
            elif seq_len_type == 'mask':
                for data_name, data_set in data_info.datasets.items():
                    for fields in data_set.get_field_names():
                        if Const.INPUT in fields:
                            data_set.apply(lambda x: [1] * len(x[fields]),
                                           new_field_name=fields.replace(
                                               Const.INPUT, Const.INPUT_LEN),
                                           is_input=auto_set_input)
            elif seq_len_type == 'bert':
                for data_name, data_set in data_info.datasets.items():
                    if Const.INPUT not in data_set.get_field_names():
                        raise KeyError(
                            f'Field ``{Const.INPUT}`` not in {data_name} data set: '
                            f'got {data_set.get_field_names()}')
                    data_set.apply(lambda x: [0] *
                                   (len(x[Const.INPUTS(0)]) + 2) + [1] *
                                   (len(x[Const.INPUTS(1)]) + 1),
                                   new_field_name=Const.INPUT_LENS(0),
                                   is_input=auto_set_input)
                    data_set.apply(lambda x: [1] * len(x[Const.INPUT_LENS(0)]),
                                   new_field_name=Const.INPUT_LENS(1),
                                   is_input=auto_set_input)

        if auto_pad_length is not None:
            cut_text = min(
                auto_pad_length,
                cut_text if cut_text is not None else auto_pad_length)

        if cut_text is not None:
            for data_name, data_set in data_info.datasets.items():
                for fields in data_set.get_field_names():
                    if (Const.INPUT
                            in fields) or ((Const.INPUT_LEN in fields) and
                                           (seq_len_type != 'seq_len')):
                        data_set.apply(lambda x: x[fields][:cut_text],
                                       new_field_name=fields,
                                       is_input=auto_set_input)

        data_set_list = [d for n, d in data_info.datasets.items()]
        assert len(data_set_list) > 0, f'There are NO data sets in data info!'

        if bert_tokenizer is None:
            words_vocab = Vocabulary(padding=auto_pad_token)
            words_vocab = words_vocab.from_dataset(
                *[d for n, d in data_info.datasets.items() if 'train' in n],
                field_name=[
                    n for n in data_set_list[0].get_field_names()
                    if (Const.INPUT in n)
                ],
                no_create_entry_dataset=[
                    d for n, d in data_info.datasets.items()
                    if 'train' not in n
                ])
        target_vocab = Vocabulary(padding=None, unknown=None)
        target_vocab = target_vocab.from_dataset(
            *[d for n, d in data_info.datasets.items() if 'train' in n],
            field_name=Const.TARGET)
        data_info.vocabs = {
            Const.INPUT: words_vocab,
            Const.TARGET: target_vocab
        }

        if get_index:
            for data_name, data_set in data_info.datasets.items():
                for fields in data_set.get_field_names():
                    if Const.INPUT in fields:
                        data_set.apply(
                            lambda x:
                            [words_vocab.to_index(w) for w in x[fields]],
                            new_field_name=fields,
                            is_input=auto_set_input)

                if Const.TARGET in data_set.get_field_names():
                    data_set.apply(
                        lambda x: target_vocab.to_index(x[Const.TARGET]),
                        new_field_name=Const.TARGET,
                        is_input=auto_set_input,
                        is_target=auto_set_target)

        if auto_pad_length is not None:
            if seq_len_type == 'seq_len':
                raise RuntimeError(
                    f'the sequence will be padded with the length {auto_pad_length}, '
                    f'so the seq_len_type cannot be `{seq_len_type}`!')
            for data_name, data_set in data_info.datasets.items():
                for fields in data_set.get_field_names():
                    if Const.INPUT in fields:
                        data_set.apply(
                            lambda x: x[fields] +
                            [words_vocab.to_index(words_vocab.padding)] *
                            (auto_pad_length - len(x[fields])),
                            new_field_name=fields,
                            is_input=auto_set_input)
                    elif (Const.INPUT_LEN
                          in fields) and (seq_len_type != 'seq_len'):
                        data_set.apply(lambda x: x[fields] + [0] *
                                       (auto_pad_length - len(x[fields])),
                                       new_field_name=fields,
                                       is_input=auto_set_input)

        for data_name, data_set in data_info.datasets.items():
            if isinstance(set_input, list):
                data_set.set_input(*[
                    inputs for inputs in set_input
                    if inputs in data_set.get_field_names()
                ])
            if isinstance(set_target, list):
                data_set.set_target(*[
                    target for target in set_target
                    if target in data_set.get_field_names()
                ])

        return data_info