Example #1
0
def main():
        
    usage = "usage: %(prog)s [config file]"
    description = "Run fermipy analysis chain."
    parser = argparse.ArgumentParser(usage=usage,description=description)

    parser.add_argument('--config', default = 'sample_config.yaml')
    parser.add_argument('--source', default = None)

    args = parser.parse_args()
    gta = GTAnalysis(args.config)

    if args.source is None:
        src_name = gta.roi.sources[0].name
    
    gta.setup()
    gta.optimize()

    if (gta.roi[src_name]['ts'] > 1000. and
        gta.roi[src_name]['SpectrumType'] == 'PowerLaw'):
        gta.set_source_spectrum(src_name, spectrum_type='LogParabola',
                                spectrum_pars={'beta' : {'value' : 0.0, 'scale' : 1.0,
                                                         'min' : 0.0, 'max' : 2.0}})

    gta.free_source(src_name)
    gta.fit()
    gta.free_source(src_name, False)

    loc = gta.localize(src_name, free_radius=1.0, update=True, make_plots=True)

    model = {'Index' : 2.0, 'SpatialModel' : 'PointSource'}
    srcs = gta.find_sources(model=model, sqrt_ts_threshold=5.0,
                            min_separation=0.5)
    
    sed = gta.sed(src_name, free_radius=1.0, make_plots=True)
    gta.tsmap(make_plots=True)
    gta.tsmap(prefix='excludeSource', exclude=[src_name], make_plots=True)

    gta.write_roi('fit0')    
    lc = gta.lightcurve(src_name, binsz=86400.*28.0, free_radius=3.0, use_scaled_srcmap=True,
                        multithread=False)
Example #2
0
class ExtensionFit:
    def __init__(self, configFile):

        self.gta = GTAnalysis(configFile, logging={'verbosity': 3})
        self.target = None
        self.targetRadius = None
        self.distance = None
        self.catalog = fits.getdata('/users-data/mfalxa/code/gll_psch_v13.fit',
                                    1)

    def setSourceName(self, sourceObject, newName):
        self.gta.delete_source(sourceObject['name'])
        self.gta.add_source(newName, sourceObject)

    ''' INITIALIZE '''

    def initialize(self, sizeROI, rInner, addToROI, TSMin, debug):

        self.gta.setup()
        if self.gta.config['selection']['emin'] >= 10000:
            self.gta.set_parameter('galdiff', 'Scale', 30000)

        if debug == True:
            self.gta.make_plots('startAll')
            self.gta.residmap(prefix='startAll', make_plots=True)

        # Get model source names
        sourceList = self.gta.get_sources(exclude=['isodiff', 'galdiff'])

        # Delete sources unassociated with TS < 50
        for i in range(len(sourceList)):
            if sourceList[i]['catalog']['TS_value'] < TSMin and self.catalog[
                    'CLASS'][self.catalog['Source_Name'] == sourceList[i]
                             ['name']][0] == '':
                self.gta.delete_source(sourceList[i]['name'])

        closests = self.gta.get_sources(distance=rInner,
                                        exclude=['isodiff', 'galdiff'])

        # Delete all unidentified sources
        for i in range(len(closests)):
            if self.catalog['CLASS'][self.catalog['Source_Name'] == closests[i]
                                     ['name']][0].isupper() == False:
                self.gta.delete_source(closests[i]['name'])
            if self.catalog['CLASS'][self.catalog['Source_Name'] == closests[i]
                                     ['name']][0] == 'SFR':
                self.target = closests[i]
                self.setSourceName(self.target, 'TESTSOURCE')

# If debug, save ROI and make plots
        if debug == True:
            self.gta.write_roi('startModel')
            self.gta.residmap(prefix='start', make_plots=True)
            self.gta.make_plots('start')

        # Optmize spectral parameters for sources with npred > 1
        self.gta.optimize(npred_threshold=1, skip=['isodiff'])

        # Get model source names
        sourceList = self.gta.get_sources(distance=sizeROI + addToROI,
                                          square=True,
                                          exclude=['isodiff', 'galdiff'])

        # Iterate source localizing on source list
        for i in range(len(sourceList)):
            if sourceList[i].extended == False:
                self.gta.localize(sourceList[i]['name'],
                                  write_fits=False,
                                  write_npy=False,
                                  update=True)

        # Free sources within ROI size + extra distance from center
        self.gta.free_sources(distance=sizeROI + addToROI, square=True)

        # Re-optimize ROI
        self.gta.optimize(skip=['isodiff'])

        # Save and make plots if debug
        if debug == True:
            self.gta.write_roi('modelInitialized')
            self.gta.residmap(prefix='initialized', make_plots=True)
            self.gta.make_plots('initialized')

        # Lock sources
        self.gta.free_sources(free=False)

    ''' OUTER REGION '''
    def outerRegionAnalysis(self, sizeROI, rInner, sqrtTsThreshold,
                            minSeparation, debug):

        self.gta.free_sources(distance=sizeROI,
                              pars='norm',
                              square=True,
                              free=True)
        self.gta.free_sources(distance=rInner, free=False)
        self.gta.free_source('galdiff', free=True)
        self.gta.free_source('isodiff', free=False)

        # Seek new sources until none are found
        sourceModel = {
            'SpectrumType': 'PowerLaw',
            'Index': 2.0,
            'Scale': 30000,
            'Prefactor': 1.e-15,
            'SpatialModel': 'PointSource'
        }
        newSources = self.gta.find_sources(sqrt_ts_threshold=sqrtTsThreshold,
                                           min_separation=minSeparation,
                                           model=sourceModel,
                                           **{
                                               'search_skydir':
                                               self.gta.roi.skydir,
                                               'search_minmax_radius':
                                               [rInner, sizeROI]
                                           })

        if len(newSources) > 0:
            for i in range(len(newSources)):
                if newSources['sources'][i]['ts'] > 100.:
                    self.gta.set_source_spectrum(
                        newSources['sources'][i]['name'],
                        spectrum_type='LogParabola')
                    self.gta.free_source(newSources['sources'][i]['name'])
                    self.gta.fit()
                    self.gta.free_source(newSources['sources'][i]['name'],
                                         free=False)

        # Optimize all ROI
        self.gta.optimize(skip=['isodiff'])

        # Save sources found
        if debug == True:
            self.gta.residmap(prefix='outer', make_plots=True)
            self.gta.write_roi('outerAnalysisROI')
            self.gta.make_plots('outer')

    ''' INNER REGION '''

    def innerRegionAnalysis(self, sizeROI, rInner, maxIter, sqrtTsThreshold,
                            minSeparation, dmMin, TSm1Min, TSextMin, debug):

        self.gta.free_sources(distance=sizeROI, square=True, free=False)
        self.gta.free_sources(distance=rInner, free=True, exclude=['isodiff'])

        # Keep closest source if identified with star forming region in catalog or look for new source closest to center within Rinner
        if self.target != None:
            print('Closest source identified with star forming region : ',
                  self.target['name'])
            self.gta.set_source_morphology('TESTSOURCE',
                                           **{'spatial_model': 'PointSource'})
        else:
            closeSources = self.gta.find_sources(sqrt_ts_threshold=2.,
                                                 min_separation=minSeparation,
                                                 max_iter=1,
                                                 **{
                                                     'search_skydir':
                                                     self.gta.roi.skydir,
                                                     'search_minmax_radius':
                                                     [0., rInner]
                                                 })
            dCenter = np.array([])
            for i in range(len(closeSources['sources'])):
                dCenter = np.append(
                    dCenter,
                    self.gta.roi.skydir.separation(
                        closeSources['sources'][i].skydir).value)
            self.target = closeSources['sources'][np.argmin(dCenter)]
            print('Target name : ', self.target['name'])
            self.setSourceName(self.target, 'TESTSOURCE')
            for i in [
                    x for x in range(len(closeSources['sources']))
                    if x != (np.argmin(dCenter))
            ]:
                self.gta.delete_source(closeSources['sources'][i]['name'])
            self.gta.optimize(skip=['isodiff'])

        # Initialize n sources array
        nSources = []

        # Save ROI without extension fit
        self.gta.write_roi('nSourcesFit')

        if debug == True:
            self.gta.make_plots('innerInit')
            self.gta.residmap(prefix='innerInit', make_plots=True)

        # Test for extension
        extensionTest = self.gta.extension('TESTSOURCE',
                                           make_plots=True,
                                           write_npy=debug,
                                           write_fits=debug,
                                           spatial_model='RadialDisk',
                                           update=True,
                                           free_background=True,
                                           fit_position=True)
        extLike = extensionTest['loglike_ext']
        TSext = extensionTest['ts_ext']
        print('TSext : ', TSext)
        extAIC = 2 * (len(self.gta.get_free_param_vector()) -
                      self.gta._roi_data['loglike'])
        self.gta.write_roi('extFit')

        if debug == True:
            self.gta.residmap(prefix='ext0', make_plots=True)
            self.gta.make_plots('ext0')

        self.gta.load_roi('nSourcesFit', reload_sources=True)

        for i in range(1, maxIter + 1):

            # Test for n point sources
            nSourcesTest = self.gta.find_sources(
                sources_per_iter=1,
                sqrt_ts_threshold=sqrtTsThreshold,
                min_separation=minSeparation,
                max_iter=1,
                **{
                    'search_skydir': self.gta.roi.skydir,
                    'search_minmax_radius': [0., rInner]
                })

            if len(nSourcesTest['sources']) > 0:

                if nSourcesTest['sources'][0]['ts'] > 100.:
                    self.gta.set_source_spectrum(
                        nSourcesTest['sources'][0]['name'],
                        spectrum_type='LogParabola')
                    self.gta.free_source(nSourcesTest['sources'][0]['name'])
                    self.gta.fit()
                    self.gta.free_source(nSourcesTest['sources'][0]['name'],
                                         free=False)

                if debug == True:
                    self.gta.make_plots('nSources' + str(i))

                nSources.append(nSourcesTest['sources'])
                self.gta.localize(nSourcesTest['sources'][0]['name'],
                                  write_npy=debug,
                                  write_fits=debug,
                                  update=True)
                nAIC = 2 * (len(self.gta.get_free_param_vector()) -
                            self.gta._roi_data['loglike'])
                self.gta.free_source(nSourcesTest['sources'][0]['name'],
                                     free=True)
                self.gta.residmap(prefix='nSources' + str(i), make_plots=True)
                self.gta.write_roi('n1SourcesFit')

                # Estimate Akaike Information Criterion difference between both models
                dm = extAIC - nAIC
                print('AIC difference between both models = ', dm)

                # Estimate TS_m+1
                extensionTestPlus = self.gta.extension(
                    'TESTSOURCE',
                    make_plots=True,
                    write_npy=debug,
                    write_fits=debug,
                    spatial_model='RadialDisk',
                    update=True,
                    free_background=True,
                    fit_position=True)
                TSm1 = 2 * (extensionTestPlus['loglike_ext'] - extLike)
                print('TSm+1 = ', TSm1)

                if debug == True:
                    self.gta.residmap(prefix='ext' + str(i), make_plots=True)
                    self.gta.make_plots('ext' + str(i))

                if dm < dmMin and TSm1 < TSm1Min:
                    self.gta.load_roi('extFit', reload_sources=True)
                    break
                else:

                    # Set extension test to current state and save current extension fit ROI and load previous nSources fit ROI
                    extensionTest = extensionTestPlus
                    extLike = extensionTestPlus['loglike_ext']
                    TSext = extensionTestPlus['ts_ext']
                    print('TSext : ', TSext)
                    extAIC = 2 * (len(self.gta.get_free_param_vector()) -
                                  self.gta._roi_data['loglike'])
                    self.gta.write_roi('extFit')
                    self.gta.load_roi('n1SourcesFit', reload_sources=True)
                    self.gta.write_roi('nSourcesFit')

            else:
                if TSext > TSextMin:
                    self.gta.load_roi('extFit', reload_sources=True)
                    break
                else:
                    self.gta.load_roi('nSourcesFit', reload_sources=True)
                    break

        self.gta.fit()

        # Get source radius depending on spatial model
        endSources = self.gta.get_sources()
        for i in range(len(endSources)):
            if endSources[i]['name'] == 'TESTSOURCE':
                self.target = endSources[i]
                self.distance = self.gta.roi.skydir.separation(
                    endSources[i].skydir).value
                if endSources[i].extended == True:
                    self.targetRadius = endSources[i]['SpatialWidth']
                else:
                    self.targetRadius = endSources[i]['pos_r95']

    ''' CHECK OVERLAP '''

    def overlapDisk(self, rInner, radiusCatalog):

        print('Target radius : ', self.targetRadius)

        # Check radius sizes
        if radiusCatalog < self.targetRadius:
            r = float(radiusCatalog)
            R = float(self.targetRadius)
        else:
            r = float(self.targetRadius)
            R = float(radiusCatalog)

        # Estimating overlapping area
        d = self.distance
        print('Distance from center : ', d)

        if d < (r + R):
            if R < (r + d):
                area = r**2 * np.arccos(
                    (d**2 + r**2 - R**2) / (2 * d * r)) + R**2 * np.arccos(
                        (d**2 + R**2 - r**2) / (2 * d * R)) - 0.5 * np.sqrt(
                            (-d + r + R) * (d + r - R) * (d - r + R) *
                            (d + r + R))
                overlap = round((area / (np.pi * r**2)) * 100, 2)
            else:
                area = np.pi * r**2
                overlap = 100.0
        else:
            area = 0.
            overlap = 0.

        print('Overlapping surface : ', area)
        print('Overlap : ', overlap)

        if overlap > 68. and self.distance < rInner:
            associated = True
        else:
            associated = False

        return associated

    ''' CHECK UPPER LIMIT '''

    def upperLimit(self, name, radius):
        sourceModel = {
            'SpectrumType': 'PowerLaw',
            'Index': 2.0,
            'Scale': 30000,
            'Prefactor': 1.e-15,
            'SpatialModel': 'RadialDisk',
            'SpatialWidth': radius,
            'glon': self.gta.config['selection']['glon'],
            'glat': self.gta.config['selection']['glat']
        }
        self.gta.add_source(name, sourceModel, free=True)
        self.gta.fit()
        self.gta.residmap(prefix='upperLimit', make_plots=True)
        print('Upper limit : ', self.gta.get_sources()[0]['flux_ul95'])
Example #3
0
def _get_fermipy_instance(configuration, likelihood_model):
    """
    Generate a 'model' configuration section for fermipy starting from a likelihood model from astromodels

    :param configuration: a dictionary containing the configuration for fermipy
    :param likelihood_model: the input likelihood model from astromodels
    :type likelihood_model: astromodels.Model
    :return: a dictionary with the 'model' section of the fermipy configuration
    """

    # Generate a new 'model' section in the configuration which reflects the model
    # provided as input

    # Get center and radius of ROI
    ra_center = float(configuration["selection"]["ra"])
    dec_center = float(configuration["selection"]["dec"])

    roi_width = float(configuration["binning"]["roiwidth"])
    roi_radius = old_div(roi_width, np.sqrt(2.0))

    # Get IRFS
    irfs = evclass_irf[int(configuration["selection"]["evclass"])]

    log.info(f"Using IRFs {irfs}")

    if "gtlike" in configuration and "irfs" in configuration["gtlike"]:

        if irfs.upper() != configuration["gtlike"]["irfs"].upper():
            log.critical(
                "Evclass points to IRFS %s, while you specified %s in the "
                "configuration" % (irfs, configuration["gtlike"]["irfs"]))

    else:

        if not "gtlike" in configuration:

            configuration["gtlike"] = {}

        configuration["gtlike"]["irfs"] = irfs

    # The fermipy model is just a dictionary. It corresponds to the 'model' section
    # of the configuration file (http://fermipy.readthedocs.io/en/latest/config.html#model)

    fermipy_model = {}

    # Find Galactic and Isotropic templates appropriate for this IRFS
    # (information on the ROI is used to cut the Galactic template, which speeds up the
    # analysis a lot)
    # NOTE: these are going to be absolute paths

    galactic_template = str(
        sanitize_filename(
            findGalacticTemplate(irfs, ra_center, dec_center, roi_radius),
            True  # noqa: F821
        ))
    isotropic_template = str(
        sanitize_filename(findIsotropicTemplate(irfs), True))  # noqa: F821

    # Add them to the fermipy model

    fermipy_model["galdiff"] = galactic_template
    fermipy_model["isodiff"] = isotropic_template

    # Now iterate over all sources contained in the likelihood model
    sources = []

    # point sources
    for point_source in list(likelihood_model.point_sources.values()
                             ):  # type: astromodels.PointSource

        this_source = {
            "Index": 2.56233,
            "Scale": 572.78,
            "Prefactor": 2.4090e-12
        }
        this_source["name"] = point_source.name
        this_source["ra"] = point_source.position.ra.value
        this_source["dec"] = point_source.position.dec.value

        # The spectrum used here is unconsequential, as it will be substituted by a FileFunction
        # later on. So I will just use PowerLaw for everything
        this_source["SpectrumType"] = "PowerLaw"

        sources.append(this_source)

    # extended sources
    for extended_source in list(likelihood_model.extended_sources.values()
                                ):  # type: astromodels.ExtendedSource

        raise NotImplementedError("Extended sources are not supported yet")

    # Add all sources to the model
    fermipy_model["sources"] = sources

    # Now we can finally instance the GTAnalysis instance
    configuration["model"] = fermipy_model

    gta = GTAnalysis(configuration)  # noqa: F821

    # This will take a long time if it's the first time we run with this model
    gta.setup()

    # Substitute all spectra for point sources with FileSpectrum, so that we will be able to control
    # them from 3ML

    energies_keV = None

    for point_source in list(likelihood_model.point_sources.values()
                             ):  # type: astromodels.PointSource

        # Fix this source, so fermipy will not optimize by itself the parameters
        gta.free_source(point_source.name, False)

        # This will substitute the current spectrum with a FileFunction with the same shape and flux
        gta.set_source_spectrum(point_source.name,
                                "FileFunction",
                                update_source=False)

        # Get the energies at which to evaluate this source
        this_log_energies, _flux = gta.get_source_dnde(point_source.name)
        this_energies_keV = (10**this_log_energies * 1e3
                             )  # fermipy energies are in GeV, we need keV

        if energies_keV is None:

            energies_keV = this_energies_keV

        else:

            # This is to make sure that all sources are evaluated at the same energies

            if not np.all(energies_keV == this_energies_keV):
                log.critical(
                    "All sources should be evaluated at the same energies.")

        dnde = point_source(energies_keV)  # ph / (cm2 s keV)
        dnde_per_MeV = dnde * 1000.0  # ph / (cm2 s MeV)
        gta.set_source_dnde(point_source.name, dnde_per_MeV, False)

    # Same for extended source
    for extended_source in list(likelihood_model.extended_sources.values()
                                ):  # type: astromodels.ExtendedSource

        raise NotImplementedError("Extended sources are not supported yet")

    return gta, energies_keV
Example #4
0
def main():
    usage = "usage: %(prog)s -c config.yaml"
    description = "Run the lc analysis"
    parser = argparse.ArgumentParser(usage=usage, description=description)
    parser.add_argument('-c', '--conf', required=True)
    parser.add_argument('-i',
                        required=False,
                        default=0,
                        help='Set local or scratch calculation',
                        type=int)
    parser.add_argument('--state',
                        help='analysis state',
                        choices=['avgspec', 'setup'],
                        default='avgspec')
    parser.add_argument('--forcepl',
                        default=0,
                        help='Force the target source to have power-law shape',
                        type=int)
    parser.add_argument('--createsed',
                        default=0,
                        help='Create SED from best fit model',
                        type=int)
    parser.add_argument(
        '--adaptive',
        default=0,
        help='Use adaptive binning for minute scale light curves',
        type=int)
    parser.add_argument('--srcprob', default = 0,
                        help='Calculate the source probability for the photons,' \
                            ' only works when no sub orbit time scales are used',
                        type=int)
    parser.add_argument(
        '--mincounts',
        default=2,
        help='Minimum number of counts within LC bin to run analysis',
        type=int)
    parser.add_argument('--simulate', default = None,
                        help='None or full path to yaml file which contains src name' \
                        'and spec to be simulated',
                        )
    parser.add_argument(
        '--make_plots',
        default=0,
        type=int,
        help='Create sed plot',
    )
    parser.add_argument(
        '--randomize',
        default=1,
        help=
        'If you simulate, use Poisson realization. If false, use Asimov data set',
        type=int)
    args = parser.parse_args()

    utils.init_logging('DEBUG')
    config = yaml.load(open(args.conf))
    tmpdir, job_id = lsf.init_lsf()
    if not job_id:
        job_id = args.i
    logging.info('tmpdir: {0:s}, job_id: {1:n}'.format(tmpdir, job_id))
    os.chdir(tmpdir)  # go to tmp directory
    logging.info('Entering directory {0:s}'.format(tmpdir))
    logging.info('PWD is {0:s}'.format(os.environ["PWD"]))

    # copy the ft1,ft2 and ltcube files
    #for k in ['evfile','scfile','ltcube']:
    # don't stage them, done automatically by fermipy if needed
    #        config[k] = utils.copy2scratch(config[k], tmpdir)
    # set the scratch directories
    logging.debug(config['data'])
    config['fileio']['scratchdir'] = tmpdir

    # set the log file
    logdir = copy.deepcopy(config['fileio']['logfile'])
    config['fileio']['logfile'] = path.join(tmpdir, 'fermipy.log')
    # debugging: all files will be saved (default is False)
    #config['fileio']['savefits'] = True

    # if simulating an orbit, save fits files
    if args.simulate is not None:
        config['fileio']['savefits'] = True

    # copy all fits files already present in outdir
    # run the analysis
    lc_config = copy.deepcopy(config['lightcurve'])
    fit_config = copy.deepcopy(config['fit_pars'])

    # remove parameters from config file not accepted by fermipy
    for k in ['configname', 'tmp', 'log', 'fit_pars']:
        config.pop(k, None)
    if 'adaptive' in config['lightcurve'].keys():
        config['lightcurve'].pop('adaptive', None)

    # set the correct time bin
    config['selection']['tmin'], config['selection']['tmax'], nj = set_lc_bin(
        config['selection']['tmin'],
        config['selection']['tmax'],
        config['lightcurve']['binsz'],
        job_id - 1 if job_id > 0 else 0,
        ft1=config['data']['evfile'])
    logging.debug('setting light curve bin' + \
        '{0:n}, between {1[tmin]:.0f} and {1[tmax]:.0f}'.format(job_id, config['selection']))
    if args.adaptive:
        config['fileio']['outdir'] = utils.mkdir(
            path.join(config['fileio']['outdir'],
                      'adaptive{0:.0f}/'.format(lc_config['adaptive'])))

    if args.state == 'setup':
        config['fileio']['outdir'] = utils.mkdir(
            path.join(config['fileio']['outdir'],
                      'setup{0:05n}/'.format(job_id if job_id > 0 else 1)))
    else:
        config['fileio']['outdir'] = utils.mkdir(
            path.join(config['fileio']['outdir'],
                      '{0:05n}/'.format(job_id if job_id > 0 else 1)))

    logging.info('Starting with fermipy analysis')
    logging.info('using fermipy version {0:s}'.format(fermipy.__version__))
    logging.info('located at {0:s}'.format(fermipy.__file__))

    if config['data']['ltcube'] == '':
        config['data'].pop('ltcube', None)

    compute_sub_gti_lc = False
    if type(config['lightcurve']['binsz']) == str:
        if len(config['lightcurve']['binsz'].strip('gti')):
            compute_sub_gti_lc = True
            if config['lightcurve']['binsz'].find('min') > 0:
                config['lightcurve']['binsz'] = float(
                    config['lightcurve']['binsz'].strip('gti').strip(
                        'min')) * 60.
                logging.info("set time bin length to {0:.2f}s".format(
                    config['lightcurve']['binsz']))
        else:
            config['lightcurve']['binsz'] = 3. * 3600.
    try:
        gta = GTAnalysis(config, logging={'verbosity': 3})
    except Exception as e:
        logging.error("{0}".format(e))
        config['selection']['target'] = None
        gta = GTAnalysis(config, logging={'verbosity': 3})
        sep = gta.roi.sources[0]['offset']
        logging.warning(
            "Source closets to ROI center is {0:.3f} degree away".format(sep))
        if sep < 0.1:
            config['selection']['target'] = gta.roi.sources[0]['name']
            gta.config['selection']['target'] = config['selection']['target']
            logging.info("Set target to {0:s}".format(
                config['selection']['target']))

    # stage the full time array analysis results to the tmp dir
    # do not copy png images
    files = [
        fn for fn in glob(fit_config['avgspec'])
        if fn.find('.xml') > 0 or fn.find('.npy') > 0
    ]
    files += [config['data']['evfile']]
    utils.copy2scratch(files, gta.workdir)

    # we're using actual data
    if args.simulate is None:
        # check before the analysis start if there are any events in the master file
        # in the specified time range
        logging.info('Checking for events in initial ft1 file')
        t = Table.read(path.join(gta.workdir,
                                 path.basename(config['data']['evfile'])),
                       hdu='EVENTS')
        logging.info("times in base ft1: {0} {1} {2}".format(
            t["TIME"].max(), t["TIME"].min(),
            t["TIME"].max() - t["TIME"].min()))
        m = (t["TIME"] >= config['selection']['tmin']) & (
            t["TIME"] <= config['selection']['tmax'])
        if np.sum(m) < args.mincounts + 1:
            logging.error(
                "*** Only {0:n} events between tmin and tmax! Exiting".format(
                    np.sum(m)))
            assert np.sum(m) > args.mincounts
        else:
            logging.info("{0:n} events between tmin and tmax".format(
                np.sum(m)))

        # check how many bins are in each potential light curve bin
        if compute_sub_gti_lc:
            # select time of first and last
            # photon instead of GTI time
            m = (t["TIME"] >= config['selection']['tmin']) & \
                 (t["TIME"] <= config['selection']['tmax'])

            tmin = t["TIME"][m].min() - 1.
            tmax = t["TIME"][m].max() + 1.
            logging.info("There will be up to {0:n} time bins".format(np.ceil(
                (tmax - tmin) / \
                config['lightcurve']['binsz'])))

            bins = np.arange(tmin, tmax, config['lightcurve']['binsz'])
            bins = np.concatenate([bins, [config['selection']['tmax']]])
            counts = calc_counts(t, bins)
            # remove the starting times of the bins with zero counts
            # and rebin the data
            logging.info("Counts before rebinning: {0}".format(counts))
            mincounts = 10.
            mc = counts < mincounts
            if np.sum(mc):
                # remove trailing zeros
                if np.any(counts == 0.):
                    mcounts_post, mcounts_pre = rm_trailing_zeros(counts)
                    counts = counts[mcounts_post & mcounts_pre]
                    bins = np.concatenate([
                        bins[:-1][mcounts_post & mcounts_pre],
                        [bins[1:][mcounts_post & mcounts_pre].max()]
                    ])
                bins = rebin(counts, bins)
                logging.info("Bin lengths after rebinning: {0}".format(
                    np.diff(bins)))
                logging.info("Bin times after rebinning: {0}".format(bins))
                counts = calc_counts(t, bins)
                logging.info("Counts after rebinning: {0}".format(counts))
            else:
                logging.info("Regular time binning will be used")
            bins = list(bins)

    logging.info('Running fermipy setup')
    try:
        gta.setup()
    except (RuntimeError, IndexError) as e:
        logging.error(
            'Caught Runtime/Index Error while initializing analysis object')
        logging.error('Printing error:')
        logging.error(e)
        if e.message.find("File not found") >= 0 and e.message.find(
                'srcmap') >= 0:
            logging.error("*** Srcmap calculation failed ***")
        if e.message.find("NDSKEYS") >= 0 and e.message.find('srcmap') >= 0:
            logging.error(
                "*** Srcmap calculation failed with NDSKEYS keyword not found in header ***"
            )

        logging.info("Checking if there are events in ft1 file")
        ft1 = path.join(gta.workdir, 'ft1_00.fits')
        f = glob(ft1)
        if not len(f):
            logging.error(
                "*** no ft1 file found at location {0:s}".format(ft1))
            raise
        t = Table.read(f[0], hdu='EVENTS')
        if not len(t):
            logging.error("*** The ft1 file contains no events!! ***".format(
                len(t)))
        else:
            logging.info("The ft1 file contains {0:n} event(s)".format(len(t)))
        return

    # end here if you only want to calulate
    # intermediate fits files
    if args.state == 'setup':
        return gta

    logging.info('Loading the fit for the average spectrum')
    gta.load_roi('avgspec')  # reload the average spectral fit
    logging.info('Running fermipy optimize and fit')

    # we're using actual data
    if args.simulate is None:
        if args.forcepl:
            gta = set_src_spec_pl(
                gta, gta.get_source_name(config['selection']['target']))
# to do add EBL absorption at some stage ...
#        gta = add_ebl_atten(gta, gta.get_source_name(config['selection']['target']), fit_config['z'])

# make sure you are fitting data
        gta.simulate_roi(restore=True)

        if compute_sub_gti_lc:
            if args.adaptive:
                # do import only here since root must be compiled
                from fermiAnalysis import adaptivebinning as ab
                # compute the exposure
                energy = 1000.
                texp, front, back = ab.comp_exposure_phi(gta, energy=1000.)
                # compute the bins
                result = ab.time_bins(
                    gta,
                    texp,
                    0.5 * (front + back),
                    #critval = 20., # bins with ~20% unc
                    critval=lc_config['adaptive'],
                    Epivot=None,  # compute on the fly
                    #                        tstart = config['selection']['tmin'],
                    #                        tstop = config['selection']['tmax']
                )

                # cut the bins to this GTI
                mask = result['tstop'] > config['selection']['tmin']
                mask = mask & (result['tstart'] < config['selection']['tmax'])

                # try again with catalog values
                if not np.sum(mask):
                    logging.error(
                        "Adaptive bins outside time window, trying catalog values for flux"
                    )
                    result = ab.time_bins(
                        gta,
                        texp,
                        0.5 * (front + back),
                        critval=lc_config['adaptive'],  # bins with ~20% unc
                        Epivot=None,  # compute on the fly
                        forcecatalog=True,
                        #                        tstart = config['selection']['tmin'],
                        #                        tstop = config['selection']['tmax']
                    )

                    # cut the bins to this GTI
                    mask = result['tstop'] > config['selection']['tmin']
                    mask = mask & (result['tstart'] <
                                   config['selection']['tmax'])
                    if not np.sum(mask):
                        logging.error(
                            "Adaptive bins do not cover selected time interval!"
                        )
                        logging.error("Using original bins")

                    else:
                        bins = np.concatenate((result['tstart'][mask],
                                               [result['tstop'][mask][-1]]))
                        bins[0] = np.max(
                            [config['selection']['tmin'], bins[0]])
                        bins[-1] = np.min(
                            [config['selection']['tmax'], bins[-1]])
                        bins = list(bins)

                        # removing trailing zeros
                        counts = calc_counts(t, bins)
                        mcounts_post, mcounts_pre = rm_trailing_zeros(counts)
                        logging.info(
                            "count masks: {0} {1}, bins: {2}, counts: {3}".
                            format(mcounts_post, mcounts_pre, bins, counts))
                        counts = counts[mcounts_post & mcounts_pre]
                        bins = np.concatenate([
                            np.array(bins)[:-1][mcounts_post & mcounts_pre],
                            [
                                np.array(bins)[1:][mcounts_post
                                                   & mcounts_pre].max()
                            ]
                        ])
                        logging.info(
                            "Using bins {0}, total n={1:n} bins".format(
                                bins,
                                len(bins) - 1))
                        logging.info("bins widths : {0}".format(np.diff(bins)))
                        logging.info("counts per bin: {0} ".format(
                            calc_counts(t, bins)))
                        bins = list(bins)


# TODO: test that this is working also with GTIs that have little or no counts

            lc = gta.lightcurve(
                config['selection']['target'],
                binsz=config['lightcurve']['binsz'],
                free_background=config['lightcurve']['free_background'],
                free_params=config['lightcurve']['free_params'],
                free_radius=config['lightcurve']['free_radius'],
                make_plots=False,
                multithread=True,
                nthread=4,
                #multithread = False,
                #nthread = 1,
                save_bin_data=True,
                shape_ts_threshold=16.,
                use_scaled_srcmap=True,
                use_local_ltcube=True,
                write_fits=True,
                write_npy=True,
                time_bins=bins,
                outdir='{0:.0f}s'.format(config['lightcurve']['binsz']))
        else:
            # run the fitting of the entire time and energy range
            try:
                o = gta.optimize()  # perform an initial fit
                logging.debug(o)
            except RuntimeError as e:
                logging.error("Error in optimize: {0}".format(e))
                logging.info("Trying to continue ...")

            gta = set_free_pars_lc(gta, config, fit_config)

            f = gta.fit()

            if 'fix_sources' in fit_config.keys():
                skip = fit_config['fix_sources'].keys()
            else:
                skip = []

            gta, f = refit(gta,
                           config['selection']['target'],
                           f,
                           fit_config['ts_fixed'],
                           skip=skip)
            gta.print_roi()
            gta.write_roi('lc')

            if args.createsed:
                if args.make_plots:
                    init_matplotlib_backend()
                gta.load_roi('lc')  # reload the average spectral fit
                logging.info('Running sed for {0[target]:s}'.format(
                    config['selection']))
                sed = gta.sed(config['selection']['target'],
                            prefix = 'lc_sed',
                            free_radius = None if config['sed']['free_radius'] == 0. \
                                else config['sed']['free_radius'],
                            free_background= config['sed']['free_background'],
                            free_pars = fa.allnorm,
                            make_plots = args.make_plots,
                            cov_scale = config['sed']['cov_scale'],
                            use_local_index = config['sed']['use_local_index'],
                            bin_index = config['sed']['bin_index']
                            )

        # debugging: calculate sed and resid maps for each light curve bin
        #logging.info('Running sed for {0[target]:s}'.format(config['selection']))
        #sed = gta.sed(config['selection']['target'], prefix = 'lc')
        #model = {'Scale': 1000., 'Index' : fit_config['new_src_pl_index'], 'SpatialModel' : 'PointSource'}
        #resid_maps = gta.residmap('lc',model=model, make_plots=True, write_fits = True, write_npy = True)

            if args.srcprob:
                logging.info("Running srcprob with srcmdl {0:s}".format('lc'))
                gta.compute_srcprob(xmlfile='lc', overwrite=True)

    # we are simulating a source
    else:
        # TODO: I probably have to run the setup here. Do on weekly files, i.e., no time cut? Only do that later?

        with open(args.simulate) as f:
            simsource = np.load(f, allow_pickle=True).flat[0]

        # set the source to the simulation value
        gta.set_source_spectrum(
            simsource['target'],
            spectrum_type=simsource['spectrum_type'],
            spectrum_pars=simsource['spectrum_pars'][job_id - 1])

        logging.info("changed spectral parameters to {0}".format(
            gta.roi.get_source_by_name(simsource['target']).spectral_pars))

        # simulate the ROI
        gta.simulate_roi(randomize=bool(args.randomize))
        gta = set_free_pars_lc(gta, config, fit_config)

        # fit the simulation
        f = gta.fit()
        gta, f = refit(gta, config['selection']['target'], f,
                       fit_config['ts_fixed'])
        gta.print_roi()
        gta.write_roi('lc_simulate_{0:s}'.format(simsource['suffix']))
    return gta
Example #5
0
def _process_lc_bin(itime, name, config, basedir, workdir, diff_sources, const_spectrum, roi, lck_params,
                    **kwargs):
    i, time = itime

    roi = copy.deepcopy(roi)

    config = copy.deepcopy(config)
    config['selection']['tmin'] = time[0]
    config['selection']['tmax'] = time[1]

    # create output directories labeled in MET vals
    outdir = basedir + 'lightcurve_%.0f_%.0f' % (time[0], time[1])
    config['fileio']['outdir'] = os.path.join(workdir, outdir)
    config['logging']['prefix'] = 'lightcurve_%.0f_%.0f ' % (time[0], time[1])
    config['fileio']['logfile'] = os.path.join(config['fileio']['outdir'],
                                               'fermipy.log')
    utils.mkdir(config['fileio']['outdir'])

    yaml.dump(utils.tolist(config),
              open(os.path.join(config['fileio']['outdir'],
                                'config.yaml'), 'w'))

    xmlfile = os.path.join(config['fileio']['outdir'], 'base.xml')

    try:
        from fermipy.gtanalysis import GTAnalysis
        gta = GTAnalysis(config, roi, loglevel=logging.DEBUG)
        gta.logger.info('Fitting time range %i %i' % (time[0], time[1]))
        gta.setup()
    except:
        print('Analysis failed in time range %i %i' %
              (time[0], time[1]))
        print(sys.exc_info()[0])
        raise
        return {}

    gta._lck_params = lck_params
    # Recompute source map for source of interest and sources within 3 deg
    if gta.config['gtlike']['use_scaled_srcmap']:
        names = [s.name for s in
                 gta.roi.get_sources(distance=3.0, skydir=gta.roi[name].skydir)
                 if not s.diffuse]
        gta.reload_sources(names)

    # Write the current model
    gta.write_xml(xmlfile)

    # Optimize the model
    gta.optimize(skip=diff_sources,
                 shape_ts_threshold=kwargs.get('shape_ts_threshold'))

    fit_results = _fit_lc(gta, name, **kwargs)
    gta.write_xml('fit_model_final.xml')
    srcmodel = copy.deepcopy(gta.get_src_model(name))
    numfree = gta.get_free_param_vector().count(True)

    max_ts_thresholds = [None, 4, 9]
    for max_ts in max_ts_thresholds:
        if max_ts is not None:
            gta.free_sources(minmax_ts=[None, max_ts], free=False, exclude=[name])

        # rerun fit using params from full time (constant) fit using same
        # param vector as the successful fit to get loglike
        specname, spectrum = const_spectrum
        gta.set_source_spectrum(name, spectrum_type=specname,
                                spectrum_pars=spectrum,
                                update_source=False)
        gta.free_source(name, free=False)
        const_fit_results = gta.fit()
        if not const_fit_results['fit_success']:
            continue
        const_srcmodel = gta.get_src_model(name)

        # rerun using shape fixed to full time fit
        # for the fixed-shape lightcurve
        gta.free_source(name, pars='norm')
        fixed_fit_results = gta.fit()
        if not fixed_fit_results['fit_success']:
            continue
        fixed_srcmodel = gta.get_src_model(name)
        break
    
    # special lc output
    o = {'flux_const': const_srcmodel['flux'],
         'loglike_const': const_fit_results['loglike'],
         'fit_success': fit_results['fit_success'],
         'fit_success_fixed': fixed_fit_results['fit_success'],
         'fit_quality': fit_results['fit_quality'],
         'fit_status': fit_results['fit_status'],
         'num_free_params': numfree,
         'config': config}

    # full flux output
    if fit_results['fit_success'] == 1:
        for k in defaults.source_flux_output.keys():
            if not k in srcmodel:
                continue
            o[k] = srcmodel[k]
            o[k+'_fixed'] = fixed_srcmodel[k]

    gta.logger.info('Finished time range %i %i' % (time[0], time[1]))
    return o
Example #6
0
def _process_lc_bin(itime, name, config, basedir, workdir, diff_sources, const_spectrum, roi, lck_params,
                    **kwargs):
    i, time = itime

    roi = copy.deepcopy(roi)

    config = copy.deepcopy(config)
    config['selection']['tmin'] = time[0]
    config['selection']['tmax'] = time[1]

    # create output directories labeled in MET vals
    outdir = basedir + 'lightcurve_%.0f_%.0f' % (time[0], time[1])
    config['fileio']['outdir'] = os.path.join(workdir, outdir)
    config['logging']['prefix'] = 'lightcurve_%.0f_%.0f ' % (time[0], time[1])
    config['fileio']['logfile'] = os.path.join(config['fileio']['outdir'],
                                               'fermipy.log')
    utils.mkdir(config['fileio']['outdir'])

    yaml.dump(utils.tolist(config),
              open(os.path.join(config['fileio']['outdir'],
                                'config.yaml'), 'w'))

    xmlfile = os.path.join(config['fileio']['outdir'], 'base.xml')

    try:
        from fermipy.gtanalysis import GTAnalysis
        gta = GTAnalysis(config, roi, loglevel=logging.DEBUG)
        gta.logger.info('Fitting time range %i %i' % (time[0], time[1]))
        gta.setup()
    except:
        print('Analysis failed in time range %i %i' %
              (time[0], time[1]))
        print(sys.exc_info()[0])
        raise
        return {}

    gta._lck_params = lck_params
    # Recompute source map for source of interest and sources within 3 deg
    if gta.config['gtlike']['use_scaled_srcmap']:
        names = [s.name for s in
                 gta.roi.get_sources(distance=3.0, skydir=gta.roi[name].skydir)
                 if not s.diffuse]
        gta.reload_sources(names)

    # Write the current model
    gta.write_xml(xmlfile)

    # Optimize the model
    gta.optimize(skip=diff_sources,
                 shape_ts_threshold=kwargs.get('shape_ts_threshold'))

    fit_results = _fit_lc(gta, name, **kwargs)
    gta.write_xml('fit_model_final.xml')
    srcmodel = copy.deepcopy(gta.get_src_model(name))
    numfree = gta.get_free_param_vector().count(True)
    
    const_srcmodel = gta.get_src_model(name).copy()
    fixed_fit_results = fit_results.copy()
    fixed_srcmodel = gta.get_src_model(name).copy()
    fixed_fit_results['fit_success'],fixed_srcmodel['fit_success'] = [False,False]
    fixed_fit_results['fit_quality'],fixed_srcmodel['fit_quality'] = [0,0]
    max_ts_thresholds = [None, 4, 9, 16, 25]
    for max_ts in max_ts_thresholds:
        if max_ts is not None:
            gta.free_sources(minmax_ts=[None, max_ts], free=False, exclude=[name])

        # rerun fit using params from full time (constant) fit using same
        # param vector as the successful fit to get loglike
        specname, spectrum = const_spectrum
        gta.set_source_spectrum(name, spectrum_type=specname,
                                spectrum_pars=spectrum,
                                update_source=False)
        gta.free_source(name, free=False)
        const_fit_results = gta.fit()
        if not const_fit_results['fit_success']:
            continue
        const_srcmodel = gta.get_src_model(name)
        # rerun using shape fixed to full time fit
        # for the fixed-shape lightcurve
        gta.free_source(name, pars='norm')
        fixed_fit_results = gta.fit()
	if not fixed_fit_results['fit_success']:
            continue
        fixed_srcmodel = gta.get_src_model(name)
        break
    
    # special lc output
    o = {'flux_const': const_srcmodel['flux'],
         'loglike_const': const_fit_results['loglike'],
         'fit_success': fit_results['fit_success'],
         'fit_success_fixed': fixed_fit_results['fit_success'],
         'fit_quality': fit_results['fit_quality'],
         'fit_status': fit_results['fit_status'],
         'num_free_params': numfree,
         'config': config}
    # full flux output
    if fit_results['fit_success'] == 1:
        for k in defaults.source_flux_output.keys():
            if not k in srcmodel:
                continue
            o[k] = srcmodel[k]
            o[k+'_fixed'] = fixed_srcmodel[k]

    gta.logger.info('Finished time range %i %i' % (time[0], time[1]))
    return o